Spaces:
Running
Running
import argparse | |
import os | |
from pathlib import Path | |
import logging | |
import re_matching | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig( | |
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
import shutil | |
from scipy.io.wavfile import write | |
import librosa | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import Dataset | |
from torch.utils.data import DataLoader, Dataset | |
from tqdm import tqdm | |
import gradio as gr | |
import utils | |
from config import config | |
import torch | |
import commons | |
from text import cleaned_text_to_sequence, get_bert | |
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations,extract_and_convert | |
from text.cleaner import clean_text | |
import utils | |
from tools.translate import translate | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
import sys | |
import re | |
import random | |
import hashlib | |
from fugashi import Tagger | |
import jaconv | |
import unidic | |
import subprocess | |
import requests | |
from ebooklib import epub | |
import PyPDF2 | |
from PyPDF2 import PdfReader | |
from bs4 import BeautifulSoup | |
import jieba | |
import romajitable | |
webBase = { | |
'pyopenjtalk-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', | |
'fugashi-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', | |
} | |
languages = [ "Auto", "ZH", "JP"] | |
modelPaths = [] | |
modes = ['pyopenjtalk-V2.3'] | |
if torch.cuda.is_available(): | |
modes = ['pyopenjtalk-V2.3','fugashi-V2.3'] | |
sentence_modes = ['sentence','paragraph'] | |
net_g = None | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
#device = "cpu" | |
BandList = { | |
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], | |
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], | |
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], | |
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], | |
"Roselia":["友希那","紗夜","リサ","燐子","あこ"], | |
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], | |
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"], | |
"MyGo":["燈","愛音","そよ","立希","楽奈"], | |
"AveMujica":["祥子","睦","海鈴","にゃむ","初華"], | |
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], | |
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], | |
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], | |
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] | |
} | |
# 推理工具 | |
def download_unidic(): | |
try: | |
Tagger() | |
print("Tagger launch successfully.") | |
except Exception as e: | |
print("UNIDIC dictionary not found, downloading...") | |
subprocess.run([sys.executable, "-m", "unidic", "download"]) | |
print("Download completed.") | |
def kanji_to_hiragana(text): | |
global tagger | |
output = "" | |
# 更新正则表达式以更准确地区分文本和标点符号 | |
segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE) | |
for segment in segments: | |
if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment): | |
# 如果是单词或汉字,转换为平假名 | |
for word in tagger(segment): | |
kana = word.feature.kana or word.surface | |
hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名 | |
output += hiragana | |
else: | |
# 如果是标点符号,保持不变 | |
output += segment | |
return output | |
def get_net_g(model_path: str, device: str, hps): | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
return net_g | |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
style_text = None if style_text == "" else style_text | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_ori = get_bert( | |
norm_text, word2ph, language_str, device, style_text, style_weight | |
) | |
del word2ph | |
assert bert_ori.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert_ori | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "JP": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = bert_ori | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "EN": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = bert_ori | |
else: | |
raise ValueError("language_str should be ZH, JP or EN") | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, en_bert, phone, tone, language | |
def infer( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
sid, | |
style_text=None, | |
style_weight=0.7, | |
language = "Auto", | |
mode = 'pyopenjtalk-V2.3', | |
skip_start=False, | |
skip_end=False, | |
): | |
if style_text == None: | |
style_text = "" | |
style_weight=0, | |
if mode == 'fugashi-V2.3': | |
text = kanji_to_hiragana(text) if is_japanese(text) else text | |
if language == "JP": | |
text = translate(text,"jp") | |
if language == "ZH": | |
text = translate(text,"zh") | |
if language == "Auto": | |
language= 'JP' if is_japanese(text) else 'ZH' | |
#print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{sid}:{language}:{mode}:{skip_start}:{skip_end}') | |
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( | |
text, | |
language, | |
hps, | |
device, | |
style_text=style_text, | |
style_weight=style_weight, | |
) | |
if skip_start: | |
phones = phones[3:] | |
tones = tones[3:] | |
lang_ids = lang_ids[3:] | |
bert = bert[:, 3:] | |
ja_bert = ja_bert[:, 3:] | |
en_bert = en_bert[:, 3:] | |
if skip_end: | |
phones = phones[:-2] | |
tones = tones[:-2] | |
lang_ids = lang_ids[:-2] | |
bert = bert[:, :-2] | |
ja_bert = ja_bert[:, :-2] | |
en_bert = en_bert[:, :-2] | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
ja_bert = ja_bert.to(device).unsqueeze(0) | |
en_bert = en_bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
# emo = emo.to(device).unsqueeze(0) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
ja_bert, | |
en_bert, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del ( | |
x_tst, | |
tones, | |
lang_ids, | |
bert, | |
x_tst_lengths, | |
speakers, | |
ja_bert, | |
en_bert, | |
) # , emo | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print("Success.") | |
return audio | |
def loadmodel(model): | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) | |
return "success" | |
def generate_audio_and_srt_for_group( | |
group, | |
outputPath, | |
group_index, | |
sampling_rate, | |
speaker, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
speakerList, | |
silenceTime, | |
language, | |
mode, | |
skip_start, | |
skip_end, | |
style_text, | |
style_weight, | |
): | |
audio_fin = [] | |
ass_entries = [] | |
start_time = 0 | |
#speaker = random.choice(cara_list) | |
ass_header = """[Script Info] | |
; 我没意见 | |
Title: Audiobook | |
ScriptType: v4.00+ | |
WrapStyle: 0 | |
PlayResX: 640 | |
PlayResY: 360 | |
ScaledBorderAndShadow: yes | |
[V4+ Styles] | |
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding | |
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1 | |
[Events] | |
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text | |
""" | |
for sentence in group: | |
try: | |
if len(sentence) > 1: | |
FakeSpeaker = sentence.split("|")[0] | |
print(FakeSpeaker) | |
SpeakersList = re.split('\n', speakerList) | |
if FakeSpeaker in list(hps.data.spk2id.keys()): | |
speaker = FakeSpeaker | |
for i in SpeakersList: | |
if FakeSpeaker == i.split("|")[1]: | |
speaker = i.split("|")[0] | |
if sentence != '\n': | |
text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。") | |
if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': | |
#print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{speaker}:{language}:{mode}:{skip_start}:{skip_end}') | |
audio = infer( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
speaker, | |
style_text, | |
style_weight, | |
language, | |
mode, | |
skip_start, | |
skip_end, | |
) | |
silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010) | |
silence_data = np.zeros((silence_frames,), dtype=audio.dtype) | |
audio_fin.append(audio) | |
audio_fin.append(silence_data) | |
duration = len(audio) / sampling_rate | |
print(duration) | |
end_time = start_time + duration + silenceTime | |
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":"))) | |
start_time = end_time | |
except: | |
pass | |
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav') | |
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass') | |
write(wav_filename, sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) | |
with open(ass_filename, 'w', encoding='utf-8') as f: | |
f.write(ass_header + '\n'.join(ass_entries)) | |
return (hps.data.sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) | |
def generate_audio( | |
inputFile, | |
groupSize, | |
filepath, | |
silenceTime, | |
speakerList, | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
sid, | |
style_text=None, | |
style_weight=0.7, | |
language = "Auto", | |
mode = 'pyopenjtalk-V2.3', | |
sentence_mode = 'sentence', | |
skip_start=False, | |
skip_end=False, | |
): | |
if inputFile: | |
text = extract_text_from_file(inputFile.name) | |
sentence_mode = 'paragraph' | |
if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': | |
if sentence_mode == 'sentence': | |
audio = infer( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
sid, | |
style_text, | |
style_weight, | |
language, | |
mode, | |
skip_start, | |
skip_end, | |
) | |
return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio)) | |
if sentence_mode == 'paragraph': | |
GROUP_SIZE = groupSize | |
directory_path = filepath if torch.cuda.is_available() else "books" | |
if os.path.exists(directory_path): | |
shutil.rmtree(directory_path) | |
os.makedirs(directory_path) | |
if language == 'Auto': | |
sentences = extrac(extract_and_convert(text)) | |
else: | |
sentences = extrac(text) | |
for i in range(0, len(sentences), GROUP_SIZE): | |
group = sentences[i:i+GROUP_SIZE] | |
if speakerList == "": | |
speakerList = "无" | |
result = generate_audio_and_srt_for_group( | |
group, | |
directory_path, | |
i//GROUP_SIZE + 1, | |
44100, | |
sid, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
speakerList, | |
silenceTime, | |
language, | |
mode, | |
skip_start, | |
skip_end, | |
style_text, | |
style_weight, | |
) | |
if not torch.cuda.is_available(): | |
return result | |
return result | |
#url = f'{webBase[mode]}?text={text}&speaker={sid}&sdp_ratio={sdp_ratio}&noise_scale={noise_scale}&noise_scale_w={noise_scale_w}&length_scale={length_scale}&language={language}&skip_start={skip_start}&skip_end={skip_end}' | |
#print(url) | |
#res = requests.get(url) | |
#改用post | |
res = requests.post(webBase[mode], json = { | |
"groupSize": groupSize, | |
"filepath": filepath, | |
"silenceTime": silenceTime, | |
"speakerList": speakerList, | |
"text": text, | |
"speaker": sid, | |
"sdp_ratio": sdp_ratio, | |
"noise_scale": noise_scale, | |
"noise_scale_w": noise_scale_w, | |
"length_scale": length_scale, | |
"language": language, | |
"skip_start": skip_start, | |
"skip_end": skip_end, | |
"mode": mode, | |
"sentence_mode": sentence_mode, | |
"style_text": style_text, | |
"style_weight": style_weight | |
}) | |
audio = res.content | |
with open('output.wav', 'wb') as code: | |
code.write(audio) | |
file_path = "output.wav" | |
return file_path | |
if __name__ == "__main__": | |
if torch.cuda.is_available(): | |
download_unidic() | |
tagger = Tagger() | |
for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'): | |
for filename in filenames: | |
modelPaths.append(os.path.join(dirpath, filename)) | |
hps = utils.get_hparams_from_file('Data/BangDream/config.json') | |
net_g = get_net_g( | |
model_path=modelPaths[-1], device=device, hps=hps | |
) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
with gr.Blocks() as app: | |
gr.Markdown(value=""" | |
[日语特化版(推荐)](https://huggingface.co/spaces/Mahiruoshi/BangStarlight),国内可用连接: https://mahiruoshi-BangStarlight.hf.space/\n | |
[假名标注版](https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert),国内可用连接: https://mahiruoshi-MyGO-VIts-bert.hf.space/\n | |
该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n | |
([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n | |
[好玩的](http://love.soyorin.top/)\n | |
API: https://mahiruoshi-bert-vits2-api.hf.space/ \n | |
调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n | |
推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n | |
二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n | |
训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n | |
BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n | |
!!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""") | |
for band in BandList: | |
with gr.TabItem(band): | |
for name in BandList[band]: | |
with gr.TabItem(name): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' | |
'</div>' | |
) | |
with gr.Accordion(label="参数设定", open=False): | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise:感情调节" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.667, step=0.01, label="Noise_W:音素长度" | |
) | |
skip_start = gr.Checkbox(label="skip_start") | |
skip_end = gr.Checkbox(label="skip_end") | |
speaker = gr.Dropdown( | |
choices=speakers, value=name, label="说话人" | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节" | |
) | |
language = gr.Dropdown( | |
choices=languages, value="Auto", label="语言选择,若不选自动则会将输入语言翻译为日语或中文" | |
) | |
mode = gr.Dropdown( | |
choices=modes, value="pyopenjtalk-V2.3", label="TTS模式,合成少歌角色需要切换成 pyopenjtalk-V2.3-Katakana " | |
) | |
sentence_mode = gr.Dropdown( | |
choices=sentence_modes, value="paragraph", label="文本合成模式" | |
) | |
with gr.Accordion(label="扩展选项", open=False): | |
inputFile = gr.UploadButton(label="txt文件输入") | |
speakerList = gr.TextArea( | |
label="角色对应表,如果你记不住角色名可以这样,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}", | |
value = "ましろ|天音\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子", | |
) | |
groupSize = gr.Slider( | |
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大句子数" | |
) | |
filepath = gr.TextArea( | |
label="本地合成时的音频存储文件夹(会清空文件夹,别把C盘删了)", | |
value = "D:/audiobook/book1", | |
) | |
silenceTime = gr.Slider( | |
minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔" | |
) | |
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value") | |
btnMod = gr.Button("载入模型") | |
statusa = gr.TextArea(label = "模型加载状态") | |
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa]) | |
with gr.Column(): | |
text = gr.TextArea( | |
label="文本输入,可用'|'分割说话人和文本,注意换行", | |
info="输入纯日语或者中文", | |
value=f"{name}|你是职业歌手吗\n天音|我觉得我是", | |
placeholder=f"私は{name}です、あの子はだれ? " | |
) | |
style_text = gr.Textbox( | |
label="情感辅助文本", | |
info="语言保持跟主文本一致,文本可以参考训练集:https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/filelists/Mygo.list)", | |
placeholder="使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n" | |
"**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)" | |
) | |
style_weight = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.7, | |
step=0.1, | |
label="Weight", | |
info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本", | |
) | |
btn = gr.Button("点击生成", variant="primary") | |
audio_output = gr.Audio(label="Output Audio") | |
btntran = gr.Button("快速中翻日") | |
translateResult = gr.TextArea(label="使用百度翻译",placeholder="从这里复制翻译后的文本") | |
btntran.click(translate, inputs=[text], outputs = [translateResult]) | |
btn.click( | |
generate_audio, | |
inputs=[ | |
inputFile, | |
groupSize, | |
filepath, | |
silenceTime, | |
speakerList, | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
speaker, | |
style_text, | |
style_weight, | |
language, | |
mode, | |
sentence_mode, | |
skip_start, | |
skip_end | |
], | |
outputs=[audio_output], | |
) | |
print("推理页面已开启!") | |
app.launch() |