Spaces:
Running
Running
from functools import partial | |
import os | |
import torch | |
import numpy as np | |
import gradio as gr | |
import gdown | |
from load import load_model, load_json | |
from load import load_unit_motion_embs_splits, load_keyids_splits | |
WEBSITE = """ | |
<div class="embed_hidden"> | |
<h1 style='text-align: center'>TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis </h1> | |
<h2 style='text-align: center'> | |
<a href="https://mathis.petrovich.fr" target="_blank"><nobr>Mathis Petrovich</nobr></a>   | |
<a href="https://ps.is.mpg.de/~black" target="_blank"><nobr>Michael J. Black</nobr></a>   | |
<a href="https://imagine.enpc.fr/~varolg" target="_blank"><nobr>Gül Varol</nobr></a> | |
</h2> | |
<h2 style='text-align: center'> | |
<nobr>ICCV 2023</nobr> | |
</h2> | |
<h3 style="text-align:center;"> | |
<a target="_blank" href="https://arxiv.org/abs/2305.00976"> <button type="button" class="btn btn-primary btn-lg"> Paper </button></a> | |
<a target="_blank" href="https://github.com/Mathux/TMR"> <button type="button" class="btn btn-primary btn-lg"> Code </button></a> | |
<a target="_blank" href="https://mathis.petrovich.fr/tmr"> <button type="button" class="btn btn-primary btn-lg"> Webpage </button></a> | |
<a target="_blank" href="https://mathis.petrovich.fr/tmr/tmr.bib"> <button type="button" class="btn btn-primary btn-lg"> BibTex </button></a> | |
</h3> | |
<h3> Description </h3> | |
<p> | |
This space illustrates <a href='https://mathis.petrovich.fr/tmr/' target='_blank'><b>TMR</b></a>, a method for text-to-motion retrieval. Given a gallery of 3D human motions (which can be unseen during training) and a text query, the goal is to search for motions which are close to the text query. | |
</p> | |
</div> | |
""" | |
EXAMPLES = [ | |
"A person is walking slowly", | |
"A person is walking in a circle", | |
"A person is jumping rope", | |
"Someone is doing a backflip", | |
"A person is doing a moonwalk", | |
"A person walks forward and then turns back", | |
"Picking up an object", | |
"A person is swimming in the sea", | |
"A human is squatting", | |
"Someone is jumping with one foot", | |
"A person is chopping vegetables", | |
"Someone walks backward", | |
"Somebody is ascending a staircase", | |
"A person is sitting down", | |
"A person is taking the stairs", | |
"Someone is doing jumping jacks", | |
"The person walked forward and is picking up his toolbox", | |
"The person angrily punching the air", | |
] | |
# Show closest text in the training | |
# css to make videos look nice | |
# var(--block-border-color); | |
CSS = """ | |
.retrieved_video { | |
position: relative; | |
margin: 0; | |
box-shadow: var(--block-shadow); | |
border-width: var(--block-border-width); | |
border-color: #000000; | |
border-radius: var(--block-radius); | |
background: var(--block-background-fill); | |
width: 100%; | |
line-height: var(--line-sm); | |
} | |
.contour_video { | |
display: flex; | |
flex-direction: column; | |
justify-content: center; | |
align-items: center; | |
z-index: var(--layer-5); | |
border-radius: var(--block-radius); | |
background: var(--background-fill-primary); | |
padding: 0 var(--size-6); | |
max-height: var(--size-screen-h); | |
overflow: hidden; | |
} | |
""" | |
DEFAULT_TEXT = "A person is " | |
def humanml3d_keyid_to_babel_rendered_url(h3d_index, amass_to_babel, keyid): | |
# Don't show the mirrored version of HumanMl3D | |
if "M" in keyid: | |
return None | |
dico = h3d_index[keyid] | |
path = dico["path"] | |
# HumanAct12 motions are not rendered online | |
# so we skip them for now | |
if "humanact12" in path: | |
return None | |
# This motion is not rendered in BABEL | |
# so we skip them for now | |
if path not in amass_to_babel: | |
return None | |
babel_id = amass_to_babel[path].zfill(6) | |
url = f"https://babel-renders.s3.eu-central-1.amazonaws.com/{babel_id}.mp4" | |
# For the demo, we retrieve from the first annotation only | |
ann = dico["annotations"][0] | |
start = ann["start"] | |
end = ann["end"] | |
text = ann["text"] | |
data = { | |
"url": url, | |
"start": start, | |
"end": end, | |
"text": text, | |
"keyid": keyid, | |
"babel_id": babel_id, | |
"path": path, | |
} | |
return data | |
def retrieve( | |
model, keyid_to_url, all_unit_motion_embs, all_keyids, text, splits=["test"], nmax=8 | |
): | |
unit_motion_embs = torch.cat([all_unit_motion_embs[s] for s in splits]) | |
keyids = np.concatenate([all_keyids[s] for s in splits]) | |
scores = model.compute_scores(text, unit_embs=unit_motion_embs) | |
sorted_idxs = np.argsort(-scores) | |
best_keyids = keyids[sorted_idxs] | |
best_scores = scores[sorted_idxs] | |
datas = [] | |
for keyid, score in zip(best_keyids, best_scores): | |
if len(datas) == nmax: | |
break | |
data = keyid_to_url(keyid) | |
if data is None: | |
continue | |
data["score"] = round(float(score), 2) | |
datas.append(data) | |
return datas | |
# HTML component | |
def get_video_html(data, video_id, width=700, height=700): | |
url = data["url"] | |
start = data["start"] | |
end = data["end"] | |
score = data["score"] | |
text = data["text"] | |
keyid = data["keyid"] | |
babel_id = data["babel_id"] | |
path = data["path"] | |
trim = f"#t={start},{end}" | |
title = f"""Score = {score} | |
Corresponding text: {text} | |
HumanML3D keyid: {keyid} | |
BABEL keyid: {babel_id} | |
AMASS path: {path}""" | |
# class="wrap default svelte-gjihhp hide" | |
# <div class="contour_video" style="position: absolute; padding: 10px;"> | |
# width="{width}" height="{height}" | |
video_html = f""" | |
<video class="retrieved_video" width="{width}" height="{height}" preload="auto" muted playsinline onpause="this.load()" | |
autoplay loop disablepictureinpicture id="{video_id}" title="{title}"> | |
<source src="{url}{trim}" type="video/mp4"> | |
Your browser does not support the video tag. | |
</video> | |
""" | |
return video_html | |
def retrieve_component(retrieve_function, text, splits_choice, nvids, n_component=24): | |
if text == DEFAULT_TEXT or text == "" or text is None: | |
return [None for _ in range(n_component)] | |
# cannot produce more than n_compoenent | |
nvids = min(nvids, n_component) | |
if "Unseen" in splits_choice: | |
splits = ["test"] | |
else: | |
splits = ["train", "val", "test"] | |
datas = retrieve_function(text, splits=splits, nmax=nvids) | |
htmls = [get_video_html(data, idx) for idx, data in enumerate(datas)] | |
# get n_component exactly if asked less | |
# pad with dummy blocks | |
htmls = htmls + [None for _ in range(max(0, n_component - nvids))] | |
return htmls | |
if not os.path.exists("data"): | |
gdown.download_folder( | |
"https://drive.google.com/drive/folders/1MgPFgHZ28AMd01M1tJ7YW_1-ut3-4j08", | |
use_cookies=False, | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# LOADING | |
model = load_model(device) | |
splits = ["train", "val", "test"] | |
all_unit_motion_embs = load_unit_motion_embs_splits(splits, device) | |
all_keyids = load_keyids_splits(splits) | |
h3d_index = load_json("amass-annotations/humanml3d.json") | |
amass_to_babel = load_json("amass-annotations/amass_to_babel.json") | |
keyid_to_url = partial(humanml3d_keyid_to_babel_rendered_url, h3d_index, amass_to_babel) | |
retrieve_function = partial( | |
retrieve, model, keyid_to_url, all_unit_motion_embs, all_keyids | |
) | |
# DEMO | |
theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray") | |
retrieve_and_show = partial(retrieve_component, retrieve_function) | |
with gr.Blocks(css=CSS, theme=theme) as demo: | |
gr.Markdown(WEBSITE) | |
videos = [] | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Column(scale=2): | |
text = gr.Textbox( | |
placeholder="Type the motion you want to search with a sentence", | |
show_label=True, | |
label="Text prompt", | |
value=DEFAULT_TEXT, | |
) | |
with gr.Column(scale=1): | |
btn = gr.Button("Retrieve", variant="primary") | |
clear = gr.Button("Clear", variant="secondary") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
splits_choice = gr.Radio( | |
["All motions", "Unseen motions"], | |
label="Gallery of motion", | |
value="All motions", | |
info="The motion gallery is coming from HumanML3D", | |
) | |
with gr.Column(scale=1): | |
# nvideo_slider = gr.Slider(minimum=4, maximum=24, step=4, value=8, label="Number of videos") | |
nvideo_slider = gr.Radio( | |
[4, 8, 12, 16, 24], | |
label="Videos", | |
value=8, | |
info="Number of videos to display", | |
) | |
with gr.Column(scale=2): | |
def retrieve_example(text, splits_choice, nvideo_slider): | |
return retrieve_and_show(text, splits_choice, nvideo_slider) | |
examples = gr.Examples( | |
examples=[[x, None, None] for x in EXAMPLES], | |
inputs=[text, splits_choice, nvideo_slider], | |
examples_per_page=20, | |
run_on_click=False, | |
cache_examples=False, | |
fn=retrieve_example, | |
outputs=[], | |
) | |
i = -1 | |
# should indent | |
for _ in range(6): | |
with gr.Row(): | |
for _ in range(4): | |
i += 1 | |
video = gr.HTML() | |
videos.append(video) | |
# connect the examples to the output | |
# a bit hacky | |
examples.outputs = videos | |
def load_example(example_id): | |
processed_example = examples.non_none_processed_examples[example_id] | |
return gr.utils.resolve_singleton(processed_example) | |
examples.dataset.click( | |
load_example, | |
inputs=[examples.dataset], | |
outputs=examples.inputs_with_examples, # type: ignore | |
show_progress=False, | |
postprocess=False, | |
queue=False, | |
).then(fn=retrieve_example, inputs=examples.inputs, outputs=videos) | |
btn.click( | |
fn=retrieve_and_show, | |
inputs=[text, splits_choice, nvideo_slider], | |
outputs=videos, | |
) | |
text.submit( | |
fn=retrieve_and_show, | |
inputs=[text, splits_choice, nvideo_slider], | |
outputs=videos, | |
) | |
splits_choice.change( | |
fn=retrieve_and_show, | |
inputs=[text, splits_choice, nvideo_slider], | |
outputs=videos, | |
) | |
nvideo_slider.change( | |
fn=retrieve_and_show, | |
inputs=[text, splits_choice, nvideo_slider], | |
outputs=videos, | |
) | |
def clear_videos(): | |
return [None for x in range(24)] + [DEFAULT_TEXT] | |
clear.click(fn=clear_videos, outputs=videos + [text]) | |
demo.launch() | |