textClassifier / app.py
MelikeDulkadir's picture
Update app.py
46845f7
import gradio as gr
from datasets import load_dataset
imdb = load_dataset("imdb")
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True)
tokenized_imdb = imdb.map(preprocess_function, batched=True)
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
training_args = TrainingArguments(
output_dir="./results",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=0.01,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_imdb["train"],
eval_dataset=tokenized_imdb["test"],
tokenizer=tokenizer,
data_collator=data_collator,
)
trainer.train()
def greet(text):
pipe = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
return pipe(text)[0]['label']
iface = gr.Interface(fn=greet, inputs=gr.inputs.Textbox(placeholder="Please enter the sentence...", lines=5), outputs="text")
iface.launch()