Tonic's picture
Create app.py
89f5b9b
from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
import autogen
import replicate
import requests
from datetime import datetime
import http.client
import json
import base64
config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
llm_config = {"config_list": config_list, "request_timeout": 120}
# function to use llava model to review image
def img_review(image_url, prompt):
data = {
"data": [
{
"image": "https://picsum.photos/200",
"features": [],
},
]}
headers = {
"x-api-key": "token 8uOw4ntevc8JKo0Q3tQq:2975e2827ebeb4e103f7b58c1410ba58fa47bc27b1302de614a000bf51bd2114",
"content-type": "application/json",
}
connection = http.client.HTTPSConnection("api.scenex.jina.ai")
connection.request("POST", "/v1/describe", json.dumps(data), headers)
response = connection.getresponse()
print(response.status, response.reason)
response_data = response.read().decode("utf-8")
print(response_data)
connection.close()
return response_data
result = img_review(
"https://cdn.discordapp.com/attachments/1083723388712919182/1089909178266558554/HannaD_A_captivating_digital_artwork_features_a_red-haired_girl_664d73dc-b537-490e-b044-4fbf22733559.png", "a llama driving a car")
print(result)
# def img_review(image_path, prompt):
# output = replicate.run(
# "yorickvp/llava-13b:6bc1c7bb0d2a34e413301fee8f7cc728d2d4e75bfab186aa995f63292bda92fc",
# input={
# "image": open(image_path, "rb"),
# "prompt": f"What is happening in the image? From scale 1 to 10, decide how similar the image is to the text prompt {prompt}?",
# }
# )
# result = ""
# for item in output:
# result += item
# return result
# function to use stability-ai model to generate image
def text_to_image_generation(prompt):
output = replicate.run(
"stability-ai/sdxl:c221b2b8ef527988fb59bf24a8b97c4561f1c671f73bd389f866bfb27c061316",
input={
"prompt": prompt
}
)
if output and len(output) > 0:
# Get the image URL from the output
image_url = output[0]
print(f"generated image for {prompt}: {image_url}")
# Download the image and save it with a filename based on the prompt and current time
current_time = datetime.now().strftime("%Y%m%d%H%M%S")
shortened_prompt = prompt[:50]
filename = f"imgs/{shortened_prompt}_{current_time}.png"
response = requests.get(image_url)
if response.status_code == 200:
with open(filename, "wb") as file:
file.write(response.content)
return f"Image saved as '{filename}'"
else:
return "Failed to download and save the image."
else:
return "Failed to generate the image."
# Create llm config
llm_config_assistants = {
"functions": [
{
"name": "text_to_image_generation",
"description": "use latest AI model to generate image based on a prompt, return the file path of image generated",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "a great text to image prompt that describe the image",
}
},
"required": ["prompt"],
},
},
{
"name": "image_review",
"description": "review & critique the AI generated image based on original prompt, decide how can images & prompt can be improved",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "the original prompt used to generate the image",
},
"image_path": {
"type": "string",
"description": "the image file path, make sure including the full file path & file extension",
}
},
"required": ["prompt", "image_path"],
},
},
],
"config_list": config_list,
"request_timeout": 120}
# Create assistant agent
img_gen_assistant = AssistantAgent(
name="text_to_img_prompt_expert",
system_message="You are a text to image AI model expert, you will use text_to_image_generation function to generate image with prompt provided, and also improve prompt based on feedback provided until it is 10/10.",
llm_config=llm_config_assistants,
function_map={
"image_review": img_review,
"text_to_image_generation": text_to_image_generation
}
)
img_critic_assistant = AssistantAgent(
name="img_critic",
system_message="You are an AI image critique, you will use img_review function to review the image generated by the text_to_img_prompt_expert against the original prompt, and provide feedback on how to improve the prompt.",
llm_config=llm_config_assistants,
function_map={
"image_review": img_review,
"text_to_image_generation": text_to_image_generation
}
)
# Create user proxy agent
user_proxy = UserProxyAgent(
name="user_proxy",
human_input_mode="ALWAYS",
)
# Create groupchat
groupchat = autogen.GroupChat(
agents=[user_proxy, img_gen_assistant, img_critic_assistant], messages=[], max_round=50)
manager = autogen.GroupChatManager(
groupchat=groupchat,
llm_config=llm_config)
# # Start the conversation
# user_proxy.initiate_chat(
# manager, message="Generate a photo realistic image of llama driving a car")