Spaces:
Running
Running
File size: 9,354 Bytes
2c9c37b 03fe70d 2c9c37b 03fe70d 2c9c37b 03fe70d 2c9c37b 03fe70d 2c9c37b 03fe70d 2c9c37b 03fe70d 2c9c37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import torch
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
from models.networks import define_G
import glob
pixelize_code = [
233356.8125, -27387.5918, -32866.8008, 126575.0312, -181590.0156,
-31543.1289, 50374.1289, 99631.4062, -188897.3750, 138322.7031,
-107266.2266, 125778.5781, 42416.1836, 139710.8594, -39614.6250,
-69972.6875, -21886.4141, 86938.4766, 31457.6270, -98892.2344,
-1191.5887, -61662.1719, -180121.9062, -32931.0859, 43109.0391,
21490.1328, -153485.3281, 94259.1797, 43103.1992, -231953.8125,
52496.7422, 142697.4062, -34882.7852, -98740.0625, 34458.5078,
-135436.3438, 11420.5488, -18895.8984, -71195.4141, 176947.2344,
-52747.5742, 109054.6562, -28124.9473, -17736.6152, -41327.1562,
69853.3906, 79046.2656, -3923.7344, -5644.5229, 96586.7578,
-89315.2656, -146578.0156, -61862.1484, -83956.4375, 87574.5703,
-75055.0469, 19571.8203, 79358.7891, -16501.5000, -147169.2188,
-97861.6797, 60442.1797, 40156.9023, 223136.3906, -81118.0547,
-221443.6406, 54911.6914, 54735.9258, -58805.7305, -168884.4844,
40865.9609, -28627.9043, -18604.7227, 120274.6172, 49712.2383,
164402.7031, -53165.0820, -60664.0469, -97956.1484, -121468.4062,
-69926.1484, -4889.0151, 127367.7344, 200241.0781, -85817.7578,
-143190.0625, -74049.5312, 137980.5781, -150788.7656, -115719.6719,
-189250.1250, -153069.7344, -127429.7891, -187588.2500, 125264.7422,
-79082.3438, -114144.5781, 36033.5039, -57502.2188, 80488.1562,
36501.4570, -138817.5938, -22189.6523, -222146.9688, -73292.3984,
127717.2422, -183836.3750, -105907.0859, 145422.8750, 66981.2031,
-9596.6699, 78099.4922, 70226.3359, 35841.8789, -116117.6016,
-150986.0156, 81622.4922, 113575.0625, 154419.4844, 53586.4141,
118494.8750, 131625.4375, -19763.1094, 75581.1172, -42750.5039,
97934.8281, 6706.7949, -101179.0078, 83519.6172, -83054.8359,
-56749.2578, -30683.6992, 54615.9492, 84061.1406, -229136.7188,
-60554.0000, 8120.2622, -106468.7891, -28316.3418, -166351.3125,
47797.3984, 96013.4141, 71482.9453, -101429.9297, 209063.3594,
-3033.6882, -38952.5352, -84920.6719, -5895.1543, -18641.8105,
47884.3633, -14620.0273, -132898.6719, -40903.5859, 197217.3750,
-128599.1328, -115397.8906, -22670.7676, -78569.9688, -54559.7070,
-106855.2031, 40703.1484, 55568.3164, 60202.9844, -64757.9375,
-32068.8652, 160663.3438, 72187.0703, -148519.5469, 162952.8906,
-128048.2031, -136153.8906, -15270.3730, -52766.3281, -52517.4531,
18652.1992, 195354.2188, -136657.3750, -8034.2622, -92699.6016,
-129169.1406, 188479.9844, 46003.7500, -93383.0781, -67831.6484,
-66710.5469, 104338.5234, 85878.8438, -73165.2031, 95857.3203,
71213.1250, 94603.1094, -30359.8125, -107989.2578, 99822.1719,
184626.3594, 79238.4531, -272978.9375, -137948.5781, -145245.8125,
75359.2031, 26652.7930, 50421.4141, 60784.4102, -18286.3398,
-182851.9531, -87178.7969, -13131.7539, 195674.8906, 59951.7852,
124353.7422, -36709.1758, -54575.4766, 77822.6953, 43697.4102,
-64394.3438, 113281.1797, -93987.0703, 221989.7188, 132902.5000,
-9538.8574, -14594.1338, 65084.9453, -12501.7227, 130330.6875,
-115123.4766, 20823.0898, 75512.4922, -75255.7422, -41936.7656,
-186678.8281, -166799.9375, 138770.6250, -78969.9531, 124516.8047,
-85558.5781, -69272.4375, -115539.1094, 228774.4844, -76529.3281,
-107735.8906, -76798.8906, -194335.2812, 56530.5742, -9397.7529,
132985.8281, 163929.8438, -188517.7969, -141155.6406, 45071.0391,
207788.3125, -125826.1172, 8965.3320, -159584.8438, 95842.4609,
-76929.4688
]
class Model():
def __init__(self, device="cpu"):
self.device = torch.device(device)
self.G_A_net = None
self.alias_net = None
def load(self):
with torch.no_grad():
self.G_A_net = define_G(3, 3, 64, "c2pGen", "instance", False, "normal", 0.02, [0])
self.alias_net = define_G(3, 3, 64, "antialias", "instance", False, "normal", 0.02, [0])
G_A_state = torch.load("160_net_G_A.pth" if not os.environ['NET_MODEL'] else os.environ['NET_MODEL'], map_location=str(self.device))
for p in list(G_A_state.keys()):
G_A_state["module."+str(p)] = G_A_state.pop(p)
self.G_A_net.load_state_dict(G_A_state)
alias_state = torch.load("alias_net.pth" if not os.environ['ALIAS_MODEL'] else os.environ['ALIAS_MODEL'], map_location=str(self.device))
for p in list(alias_state.keys()):
alias_state["module."+str(p)] = alias_state.pop(p)
self.alias_net.load_state_dict(alias_state)
def pixelize(self, in_img, out_img):
with torch.no_grad():
in_img = Image.open(in_img).convert('RGB')
in_t = process(in_img).to(self.device)
out_t = self.alias_net(self.G_A_net(in_t, self.ref_t))
save(out_t, out_img)
def pixelize_modified(self, in_img, pixel_size, upscale_after) -> Image.Image:
with torch.no_grad():
in_img = in_img.convert('RGB')
# limit in_img size to 1024x1024 to maintain performance
if in_img.size[0] > 1024 or in_img.size[1] > 1024:
in_img.thumbnail((1024, 1024), Image.NEAREST)
# Killing inspect element users, I know what you're doing lol.
pixel_size = pixel_size if pixel_size >= 4 else 4
in_img = in_img.resize((in_img.size[0] * 4 // pixel_size, in_img.size[1] * 4 // pixel_size))
in_t = process(in_img).to(self.device)
# out_t = self.alias_net(self.G_A_net(in_t, self.ref_t))
feature = self.G_A_net.module.RGBEnc(in_t)
code = torch.asarray(pixelize_code, device=self.device).reshape((1, 256, 1, 1))
adain_params = self.G_A_net.module.MLP(code)
images = self.G_A_net.module.RGBDec(feature, adain_params)
out_t = self.alias_net(images)
img = to_image(out_t, pixel_size, upscale_after)
return img
def to_image(tensor, pixel_size, upscale_after):
img = tensor.data[0].cpu().float().numpy()
img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0
img = img.astype(np.uint8)
img = Image.fromarray(img)
img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST)
if upscale_after:
img = img.resize((img.size[0]*pixel_size, img.size[1]*pixel_size), resample=Image.Resampling.NEAREST)
return img
def greyscale(img):
gray = np.array(img.convert('L'))
tmp = np.expand_dims(gray, axis=2)
tmp = np.concatenate((tmp, tmp, tmp), axis=-1)
return Image.fromarray(tmp)
def process(img):
ow,oh = img.size
nw = int(round(ow / 4) * 4)
nh = int(round(oh / 4) * 4)
left = (ow - nw)//2
top = (oh - nh)//2
right = left + nw
bottom = top + nh
img = img.crop((left, top, right, bottom))
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
return trans(img)[None, :, :, :]
def save(tensor, file):
img = tensor.data[0].cpu().float().numpy()
img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0
img = img.astype(np.uint8)
img = Image.fromarray(img)
img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST)
img = img.resize((img.size[0]*4, img.size[1]*4), resample=Image.Resampling.NEAREST)
img.save(file)
def pixelize_cli():
import argparse
import os
parser = argparse.ArgumentParser(description='Pixelization')
parser.add_argument('--input', type=str, default=None, required=True, help='path to image or directory')
parser.add_argument('--output', type=str, default=None, required=False, help='path to save image/images')
parser.add_argument('--cpu', action='store_true', help='use CPU instead of GPU')
args = parser.parse_args()
in_path = args.input
out_path = args.output
use_cpu = args.cpu
if not os.path.exists("alias_net.pth" if not os.environ['ALIAS_MODEL'] else os.environ['ALIAS_MODEL']):
print("missing models")
pairs = []
if os.path.isdir(in_path):
in_images = glob.glob(in_path + "/*.png") + glob.glob(in_path + "/*.jpg")
if not out_path:
out_path = os.path.join(in_path, "outputs")
if not os.path.exists(out_path):
os.makedirs(out_path)
elif os.path.isfile(out_path):
print("output cant be a file if input is a directory")
return
for i in in_images:
pairs += [(i, i.replace(in_path, out_path))]
elif os.path.isfile(in_path):
if not out_path:
base, ext = os.path.splitext(in_path)
out_path = base+"_pixelized"+ext
else:
if os.path.isdir(out_path):
_, file = os.path.split(in_path)
out_path = os.path.join(out_path, file)
pairs = [(in_path, out_path)]
m = Model(device = "cpu" if use_cpu else "cuda")
m.load()
for in_file, out_file in pairs:
print("PROCESSING", in_file, "TO", out_file)
m.pixelize(in_file, out_file)
if __name__ == "__main__":
pixelize_cli() |