Spaces:
Running
Running
File size: 16,480 Bytes
2c9c37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
class ModulationConvBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride=1,
padding=0, norm='none', activation='relu', pad_type='zero'):
super(ModulationConvBlock, self).__init__()
self.in_c = input_dim
self.out_c = output_dim
self.ksize = kernel_size
self.stride = 1
self.padding = kernel_size // 2
self.eps = 1e-8
weight_shape = (output_dim, input_dim, kernel_size, kernel_size)
fan_in = kernel_size * kernel_size *input_dim
wscale = 1.0/np.sqrt(fan_in)
self.weight = nn.Parameter(torch.randn(*weight_shape))
self.wscale = wscale
self.bias = nn.Parameter(torch.zeros(output_dim))
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.activate_scale = np.sqrt(2.0)
def forward(self, x, code):
batch,in_channel,height,width = x.shape
weight = self.weight * self.wscale
_weight = weight.view(1, self.ksize, self.ksize, self.in_c, self.out_c)
_weight = _weight * code.view(batch, 1, 1, self.in_c, 1)
# demodulation
_weight_norm = torch.sqrt(torch.sum(_weight ** 2, dim=[1, 2, 3]) + self.eps)
_weight = _weight / _weight_norm.view(batch, 1, 1, 1, self.out_c)
# fused_modulate
x = x.view(1, batch * self.in_c, x.shape[2], x.shape[3])
weight = _weight.permute(1, 2, 3, 0, 4).reshape(
self.ksize, self.ksize, self.in_c, batch * self.out_c)
# not use_conv2d_transpose
weight = weight.permute(3, 2, 0, 1)
x = F.conv2d(x,
weight=weight,
bias=None,
stride=self.stride,
padding=self.padding,
groups=(batch if True else 1))
if True:#self.fused_modulate:
x = x.view(batch, self.out_c, height, width)
x = x+self.bias.view(1,-1,1,1)
x = self.activate(x)*self.activate_scale
return x
class AliasConvBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride,
padding=0, norm='none', activation='relu', pad_type='zero'):
super(AliasConvBlock, self).__init__()
self.use_bias = True
# initialize padding
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# initialize normalization
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
# self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none' or norm == 'sn':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
# initialize convolution
if norm == 'sn':
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
else:
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
def forward(self, x):
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class AliasResBlocks(nn.Module):
def __init__(self, num_blocks, dim, norm='in', activation='relu', pad_type='zero'):
super(AliasResBlocks, self).__init__()
self.model = []
for i in range(num_blocks):
self.model += [AliasResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x)
class AliasResBlock(nn.Module):
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
super(AliasResBlock, self).__init__()
model = []
model += [AliasConvBlock(dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
model += [AliasConvBlock(dim, dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
self.model = nn.Sequential(*model)
def forward(self, x):
residual = x
out = self.model(x)
out += residual
return out
##################################################################################
# Sequential Models
##################################################################################
class ResBlocks(nn.Module):
def __init__(self, num_blocks, dim, norm='in', activation='relu', pad_type='zero'):
super(ResBlocks, self).__init__()
self.model = []
for i in range(num_blocks):
self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x)
class MLP(nn.Module):
def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'):
super(MLP, self).__init__()
self.model = []
self.model += [linearBlock(input_dim, input_dim, norm=norm, activation=activ)]
self.model += [linearBlock(input_dim, dim, norm=norm, activation=activ)]
for i in range(n_blk - 2):
self.model += [linearBlock(dim, dim, norm=norm, activation=activ)]
self.model += [linearBlock(dim, output_dim, norm='none', activation='none')] # no output activations
self.model = nn.Sequential(*self.model)
# def forward(self, style0, style1, a=0):
# return self.model[3]((1 - a) * self.model[0:3](style0.view(style0.size(0), -1)) + a * self.model[0:3](
# style1.view(style1.size(0), -1)))
def forward(self, style0, style1=None, a=0):
style1 = style0
return self.model[3]((1 - a) * self.model[0:3](style0.view(style0.size(0), -1)) + a * self.model[0:3](
style1.view(style1.size(0), -1)))
##################################################################################
# Basic Blocks
##################################################################################
class ResBlock(nn.Module):
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
super(ResBlock, self).__init__()
model = []
model += [ConvBlock(dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
model += [ConvBlock(dim, dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
self.model = nn.Sequential(*model)
def forward(self, x):
residual = x
out = self.model(x)
out += residual
return out
class ConvBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride,
padding=0, norm='none', activation='relu', pad_type='zero'):
super(ConvBlock, self).__init__()
self.use_bias = True
# initialize padding
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# initialize normalization
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
# self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none' or norm == 'sn':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
# initialize convolution
if norm == 'sn':
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
else:
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
def forward(self, x):
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class linearBlock(nn.Module):
def __init__(self, input_dim, output_dim, norm='none', activation='relu'):
super(linearBlock, self).__init__()
use_bias = True
# initialize fully connected layer
if norm == 'sn':
self.fc = SpectralNorm(nn.Linear(input_dim, output_dim, bias=use_bias))
else:
self.fc = nn.Linear(input_dim, output_dim, bias=use_bias)
# initialize normalization
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm1d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm1d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'none' or norm == 'sn':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
def forward(self, x):
out = self.fc(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
##################################################################################
# Normalization layers
##################################################################################
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1):
super(AdaptiveInstanceNorm2d, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
# weight and bias are dynamically assigned
self.weight = None
self.bias = None
# just dummy buffers, not used
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
def forward(self, x):
assert self.weight is not None and self.bias is not None, "Please assign weight and bias before calling AdaIN!"
b, c = x.size(0), x.size(1)
running_mean = self.running_mean.repeat(b)
running_var = self.running_var.repeat(b)
# Apply instance norm
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
out = F.batch_norm(
x_reshaped, running_mean, running_var, self.weight, self.bias,
True, self.momentum, self.eps)
return out.view(b, c, *x.size()[2:])
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-5, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
# print(x.size())
if x.size(0) == 1:
# These two lines run much faster in pytorch 0.4 than the two lines listed below.
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
"""
Based on the paper "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida
and the Pytorch implementation https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
"""
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + "_u")
v = getattr(self.module, self.name + "_v")
w = getattr(self.module, self.name + "_bar")
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
# sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
u = getattr(self.module, self.name + "_u")
v = getattr(self.module, self.name + "_v")
w = getattr(self.module, self.name + "_bar")
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = nn.Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + "_u", u)
self.module.register_parameter(self.name + "_v", v)
self.module.register_parameter(self.name + "_bar", w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
|