File size: 16,480 Bytes
2c9c37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np

class ModulationConvBlock(nn.Module):
    def __init__(self, input_dim, output_dim, kernel_size, stride=1,
                 padding=0, norm='none', activation='relu', pad_type='zero'):
        super(ModulationConvBlock, self).__init__()
        self.in_c = input_dim
        self.out_c = output_dim
        self.ksize = kernel_size
        self.stride = 1
        self.padding = kernel_size // 2

        self.eps = 1e-8
        weight_shape = (output_dim, input_dim, kernel_size, kernel_size)
        fan_in = kernel_size * kernel_size *input_dim
        wscale = 1.0/np.sqrt(fan_in)

        self.weight = nn.Parameter(torch.randn(*weight_shape))
        self.wscale = wscale

        self.bias = nn.Parameter(torch.zeros(output_dim))

        self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
        self.activate_scale = np.sqrt(2.0)

    def forward(self, x, code):
        batch,in_channel,height,width = x.shape
        weight = self.weight * self.wscale
        _weight = weight.view(1, self.ksize, self.ksize, self.in_c, self.out_c)
        _weight = _weight * code.view(batch, 1, 1, self.in_c, 1)
        # demodulation
        _weight_norm = torch.sqrt(torch.sum(_weight ** 2, dim=[1, 2, 3]) + self.eps)
        _weight = _weight / _weight_norm.view(batch, 1, 1, 1, self.out_c)
        # fused_modulate
        x = x.view(1, batch * self.in_c, x.shape[2], x.shape[3])
        weight = _weight.permute(1, 2, 3, 0, 4).reshape(
            self.ksize, self.ksize, self.in_c, batch * self.out_c)
        # not use_conv2d_transpose
        weight = weight.permute(3, 2, 0, 1)
        x = F.conv2d(x,
                     weight=weight,
                     bias=None,
                     stride=self.stride,
                     padding=self.padding,
                     groups=(batch if True else 1))

        if True:#self.fused_modulate:
            x = x.view(batch, self.out_c, height, width)
        x = x+self.bias.view(1,-1,1,1)
        x = self.activate(x)*self.activate_scale
        return x


class AliasConvBlock(nn.Module):
    def __init__(self, input_dim, output_dim, kernel_size, stride,
                 padding=0, norm='none', activation='relu', pad_type='zero'):
        super(AliasConvBlock, self).__init__()
        self.use_bias = True
        # initialize padding
        if pad_type == 'reflect':
            self.pad = nn.ReflectionPad2d(padding)
        elif pad_type == 'replicate':
            self.pad = nn.ReplicationPad2d(padding)
        elif pad_type == 'zero':
            self.pad = nn.ZeroPad2d(padding)
        else:
            assert 0, "Unsupported padding type: {}".format(pad_type)

        # initialize normalization
        norm_dim = output_dim
        if norm == 'bn':
            self.norm = nn.BatchNorm2d(norm_dim)
        elif norm == 'in':
            # self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
            self.norm = nn.InstanceNorm2d(norm_dim)
        elif norm == 'ln':
            self.norm = LayerNorm(norm_dim)
        elif norm == 'adain':
            self.norm = AdaptiveInstanceNorm2d(norm_dim)
        elif norm == 'none' or norm == 'sn':
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # initialize activation
        if activation == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == 'prelu':
            self.activation = nn.PReLU()
        elif activation == 'selu':
            self.activation = nn.SELU(inplace=True)
        elif activation == 'tanh':
            self.activation = nn.Tanh()
        elif activation == 'none':
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

        # initialize convolution
        if norm == 'sn':
            self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)

        else:
            self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)

    def forward(self, x):
        x = self.conv(self.pad(x))
        if self.norm:
            x = self.norm(x)
        if self.activation:
            x = self.activation(x)
        return x

class AliasResBlocks(nn.Module):
    def __init__(self, num_blocks, dim, norm='in', activation='relu', pad_type='zero'):
        super(AliasResBlocks, self).__init__()
        self.model = []
        for i in range(num_blocks):
            self.model += [AliasResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)

    def forward(self, x):
        return self.model(x)
class AliasResBlock(nn.Module):
    def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
        super(AliasResBlock, self).__init__()

        model = []
        model += [AliasConvBlock(dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
        model += [AliasConvBlock(dim, dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
        self.model = nn.Sequential(*model)

    def forward(self, x):
        residual = x
        out = self.model(x)
        out += residual
        return out
##################################################################################
# Sequential Models
##################################################################################
class ResBlocks(nn.Module):
    def __init__(self, num_blocks, dim, norm='in', activation='relu', pad_type='zero'):
        super(ResBlocks, self).__init__()
        self.model = []
        for i in range(num_blocks):
            self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)

    def forward(self, x):
        return self.model(x)


class MLP(nn.Module):
    def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'):
        super(MLP, self).__init__()
        self.model = []
        self.model += [linearBlock(input_dim, input_dim, norm=norm, activation=activ)]
        self.model += [linearBlock(input_dim, dim, norm=norm, activation=activ)]
        for i in range(n_blk - 2):
            self.model += [linearBlock(dim, dim, norm=norm, activation=activ)]
        self.model += [linearBlock(dim, output_dim, norm='none', activation='none')]  # no output activations
        self.model = nn.Sequential(*self.model)

    # def forward(self, style0, style1, a=0):
    #     return self.model[3]((1 - a) * self.model[0:3](style0.view(style0.size(0), -1)) + a * self.model[0:3](
    #         style1.view(style1.size(0), -1)))
    def forward(self, style0, style1=None, a=0):
        style1 = style0
        return self.model[3]((1 - a) * self.model[0:3](style0.view(style0.size(0), -1)) + a * self.model[0:3](
            style1.view(style1.size(0), -1)))
##################################################################################
# Basic Blocks
##################################################################################
class ResBlock(nn.Module):
    def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
        super(ResBlock, self).__init__()

        model = []
        model += [ConvBlock(dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
        model += [ConvBlock(dim, dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
        self.model = nn.Sequential(*model)

    def forward(self, x):
        residual = x
        out = self.model(x)
        out += residual
        return out


class ConvBlock(nn.Module):
    def __init__(self, input_dim, output_dim, kernel_size, stride,
                 padding=0, norm='none', activation='relu', pad_type='zero'):
        super(ConvBlock, self).__init__()
        self.use_bias = True
        # initialize padding
        if pad_type == 'reflect':
            self.pad = nn.ReflectionPad2d(padding)
        elif pad_type == 'replicate':
            self.pad = nn.ReplicationPad2d(padding)
        elif pad_type == 'zero':
            self.pad = nn.ZeroPad2d(padding)
        else:
            assert 0, "Unsupported padding type: {}".format(pad_type)

        # initialize normalization
        norm_dim = output_dim
        if norm == 'bn':
            self.norm = nn.BatchNorm2d(norm_dim)
        elif norm == 'in':
            # self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
            self.norm = nn.InstanceNorm2d(norm_dim)
        elif norm == 'ln':
            self.norm = LayerNorm(norm_dim)
        elif norm == 'adain':
            self.norm = AdaptiveInstanceNorm2d(norm_dim)
        elif norm == 'none' or norm == 'sn':
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # initialize activation
        if activation == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == 'prelu':
            self.activation = nn.PReLU()
        elif activation == 'selu':
            self.activation = nn.SELU(inplace=True)
        elif activation == 'tanh':
            self.activation = nn.Tanh()
        elif activation == 'none':
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

        # initialize convolution
        if norm == 'sn':
            self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)

        else:
            self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)

    def forward(self, x):
        x = self.conv(self.pad(x))
        if self.norm:
            x = self.norm(x)
        if self.activation:
            x = self.activation(x)
        return x

class linearBlock(nn.Module):
    def __init__(self, input_dim, output_dim, norm='none', activation='relu'):
        super(linearBlock, self).__init__()
        use_bias = True
        # initialize fully connected layer
        if norm == 'sn':
            self.fc = SpectralNorm(nn.Linear(input_dim, output_dim, bias=use_bias))
        else:
            self.fc = nn.Linear(input_dim, output_dim, bias=use_bias)

        # initialize normalization
        norm_dim = output_dim
        if norm == 'bn':
            self.norm = nn.BatchNorm1d(norm_dim)
        elif norm == 'in':
            self.norm = nn.InstanceNorm1d(norm_dim)
        elif norm == 'ln':
            self.norm = LayerNorm(norm_dim)
        elif norm == 'none' or norm == 'sn':
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # initialize activation
        if activation == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif activation == 'prelu':
            self.activation = nn.PReLU()
        elif activation == 'selu':
            self.activation = nn.SELU(inplace=True)
        elif activation == 'tanh':
            self.activation = nn.Tanh()
        elif activation == 'none':
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(activation)

    def forward(self, x):
        out = self.fc(x)
        if self.norm:
            out = self.norm(out)
        if self.activation:
            out = self.activation(out)
        return out
##################################################################################
# Normalization layers
##################################################################################
class AdaptiveInstanceNorm2d(nn.Module):
    def __init__(self, num_features, eps=1e-5, momentum=0.1):
        super(AdaptiveInstanceNorm2d, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum
        # weight and bias are dynamically assigned
        self.weight = None
        self.bias = None
        # just dummy buffers, not used
        self.register_buffer('running_mean', torch.zeros(num_features))
        self.register_buffer('running_var', torch.ones(num_features))

    def forward(self, x):
        assert self.weight is not None and self.bias is not None, "Please assign weight and bias before calling AdaIN!"
        b, c = x.size(0), x.size(1)
        running_mean = self.running_mean.repeat(b)
        running_var = self.running_var.repeat(b)

        # Apply instance norm
        x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])

        out = F.batch_norm(
            x_reshaped, running_mean, running_var, self.weight, self.bias,
            True, self.momentum, self.eps)

        return out.view(b, c, *x.size()[2:])

    def __repr__(self):
        return self.__class__.__name__ + '(' + str(self.num_features) + ')'


class LayerNorm(nn.Module):
    def __init__(self, num_features, eps=1e-5, affine=True):
        super(LayerNorm, self).__init__()
        self.num_features = num_features
        self.affine = affine
        self.eps = eps

        if self.affine:
            self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
            self.beta = nn.Parameter(torch.zeros(num_features))

    def forward(self, x):
        shape = [-1] + [1] * (x.dim() - 1)
        # print(x.size())
        if x.size(0) == 1:
            # These two lines run much faster in pytorch 0.4 than the two lines listed below.
            mean = x.view(-1).mean().view(*shape)
            std = x.view(-1).std().view(*shape)
        else:
            mean = x.view(x.size(0), -1).mean(1).view(*shape)
            std = x.view(x.size(0), -1).std(1).view(*shape)

        x = (x - mean) / (std + self.eps)

        if self.affine:
            shape = [1, -1] + [1] * (x.dim() - 2)
            x = x * self.gamma.view(*shape) + self.beta.view(*shape)
        return x


def l2normalize(v, eps=1e-12):
    return v / (v.norm() + eps)


class SpectralNorm(nn.Module):
    """
    Based on the paper "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida
    and the Pytorch implementation https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
    """

    def __init__(self, module, name='weight', power_iterations=1):
        super(SpectralNorm, self).__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()

    def _update_u_v(self):
        u = getattr(self.module, self.name + "_u")
        v = getattr(self.module, self.name + "_v")
        w = getattr(self.module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data))
            u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))

        # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
        sigma = u.dot(w.view(height, -1).mv(v))
        setattr(self.module, self.name, w / sigma.expand_as(w))

    def _made_params(self):
        try:
            u = getattr(self.module, self.name + "_u")
            v = getattr(self.module, self.name + "_v")
            w = getattr(self.module, self.name + "_bar")
            return True
        except AttributeError:
            return False

    def _make_params(self):
        w = getattr(self.module, self.name)

        height = w.data.shape[0]
        width = w.view(height, -1).data.shape[1]

        u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
        v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
        u.data = l2normalize(u.data)
        v.data = l2normalize(v.data)
        w_bar = nn.Parameter(w.data)

        del self.module._parameters[self.name]

        self.module.register_parameter(self.name + "_u", u)
        self.module.register_parameter(self.name + "_v", v)
        self.module.register_parameter(self.name + "_bar", w_bar)

    def forward(self, *args):
        self._update_u_v()
        return self.module.forward(*args)