File size: 12,008 Bytes
2c9c37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from .basic_layer import *
import math
from torch.nn import Parameter
#from pytorch_metric_learning import losses

'''
Margin code is borrowed from https://github.com/MuggleWang/CosFace_pytorch and https://github.com/wujiyang/Face_Pytorch.
'''
def cosine_sim(x1, x2, dim=1, eps=1e-8):
    ip = torch.mm(x1, x2.t())  #  w  7*512
    w1 = torch.norm(x1, 2, dim)
    w2 = torch.norm(x2, 2, dim)
    return ip / torch.ger(w1,w2).clamp(min=eps)

class MarginCosineProduct(nn.Module):
    r"""Implement of large margin cosine distance: :
    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        s: norm of input feature
        m: margin
    """

    def __init__(self, in_features, out_features, s=30.0, m=0.40):
        super(MarginCosineProduct, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.s = s
        self.m = m
        self.weight = Parameter(torch.Tensor(out_features, in_features)) # 7 512
        nn.init.xavier_uniform_(self.weight)
        #stdv = 1. / math.sqrt(self.weight.size(1))
        #self.weight.data.uniform_(-stdv, stdv)

    def forward(self, input, label):
        cosine = cosine_sim(input, self.weight)  # 1*512  7*512
        # cosine = F.linear(F.normalize(input), F.normalize(self.weight))
        # --------------------------- convert label to one-hot ---------------------------
        # https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507
        one_hot = torch.zeros_like(cosine)
        one_hot.scatter_(1, label.view(-1, 1), 1.0)
        # -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
        output = self.s * (cosine - one_hot * self.m)

        return output

    def __repr__(self):
        return self.__class__.__name__ + '(' \
               + 'in_features=' + str(self.in_features) \
               + ', out_features=' + str(self.out_features) \
               + ', s=' + str(self.s) \
               + ', m=' + str(self.m) + ')'

class ArcMarginProduct(nn.Module):
    def __init__(self, in_feature=128, out_feature=10575, s=32.0, m=0.50, easy_margin=False):
        super(ArcMarginProduct, self).__init__()
        self.in_feature = in_feature
        self.out_feature = out_feature
        self.s = s
        self.m = m
        self.weight = Parameter(torch.Tensor(out_feature, in_feature))
        nn.init.xavier_uniform_(self.weight)

        self.easy_margin = easy_margin
        self.cos_m = math.cos(m)
        self.sin_m = math.sin(m)

        # make the function cos(theta+m) monotonic decreasing while theta in [0°,180°]
        self.th = math.cos(math.pi - m)
        self.mm = math.sin(math.pi - m) * m

    def forward(self, x, label):
        # cos(theta)
        cosine = F.linear(F.normalize(x), F.normalize(self.weight))
        # cos(theta + m)
        sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
        phi = cosine * self.cos_m - sine * self.sin_m

        if self.easy_margin:
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm)

        #one_hot = torch.zeros(cosine.size(), device='cuda' if torch.cuda.is_available() else 'cpu')
        one_hot = torch.zeros_like(cosine)
        one_hot.scatter_(1, label.view(-1, 1), 1)
        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
        output = output * self.s

        return output


class MultiMarginProduct(nn.Module):
    def __init__(self, in_feature=128, out_feature=10575, s=32.0, m1=0.20, m2=0.35, easy_margin=False):
        super(MultiMarginProduct, self).__init__()
        self.in_feature = in_feature
        self.out_feature = out_feature
        self.s = s
        self.m1 = m1
        self.m2 = m2
        self.weight = Parameter(torch.Tensor(out_feature, in_feature))
        nn.init.xavier_uniform_(self.weight)

        self.easy_margin = easy_margin
        self.cos_m1 = math.cos(m1)
        self.sin_m1 = math.sin(m1)

        # make the function cos(theta+m) monotonic decreasing while theta in [0°,180°]
        self.th = math.cos(math.pi - m1)
        self.mm = math.sin(math.pi - m1) * m1

    def forward(self, x, label):
        # cos(theta)
        cosine = F.linear(F.normalize(x), F.normalize(self.weight))
        # cos(theta + m1)
        sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
        phi = cosine * self.cos_m1 - sine * self.sin_m1

        if self.easy_margin:
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm)


        one_hot = torch.zeros_like(cosine)
        one_hot.scatter_(1, label.view(-1, 1), 1)
        output = (one_hot * phi) + ((1.0 - one_hot) * cosine) # additive angular margin
        output = output - one_hot * self.m2 # additive cosine margin
        output = output * self.s

        return output


class CPDis(nn.Module):
    """PatchGAN."""
    def __init__(self, image_size=256, conv_dim=64, repeat_num=3, norm='SN'):
        super(CPDis, self).__init__()

        layers = []
        if norm == 'SN':
            layers.append(spectral_norm(nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1)))
        else:
            layers.append(nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1))
        layers.append(nn.LeakyReLU(0.01, inplace=True))

        curr_dim = conv_dim
        for i in range(1, repeat_num):
            if norm == 'SN':
                layers.append(spectral_norm(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=2, padding=1)))
            else:
                layers.append(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=2, padding=1))
            layers.append(nn.LeakyReLU(0.01, inplace=True))
            curr_dim = curr_dim * 2

        # k_size = int(image_size / np.power(2, repeat_num))
        if norm == 'SN':
            layers.append(spectral_norm(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=1, padding=1)))
        else:
            layers.append(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=1, padding=1))
        layers.append(nn.LeakyReLU(0.01, inplace=True))
        curr_dim = curr_dim * 2

        self.main = nn.Sequential(*layers)
        if norm == 'SN':
            self.conv1 = spectral_norm(nn.Conv2d(curr_dim, 1, kernel_size=4, stride=1, padding=1, bias=False))
        else:
            self.conv1 = nn.Conv2d(curr_dim, 1, kernel_size=4, stride=1, padding=1, bias=False)

    def forward(self, x):
        if x.ndim == 5:
            x = x.squeeze(0)
        assert x.ndim == 4, x.ndim
        h = self.main(x)
        # out_real = self.conv1(h)
        out_makeup = self.conv1(h)
        # return out_real.squeeze(), out_makeup.squeeze()
        return out_makeup


class CPDis_cls(nn.Module):
    """PatchGAN."""
    def __init__(self, image_size=256, conv_dim=64, repeat_num=3, norm='SN'):
        super(CPDis_cls, self).__init__()

        layers = []
        if norm == 'SN':
            layers.append(spectral_norm(nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1)))
        else:
            layers.append(nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1))
        layers.append(nn.LeakyReLU(0.01, inplace=True))

        curr_dim = conv_dim
        for i in range(1, repeat_num):
            if norm == 'SN':
                layers.append(spectral_norm(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=2, padding=1)))
            else:
                layers.append(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=2, padding=1))
            layers.append(nn.LeakyReLU(0.01, inplace=True))
            curr_dim = curr_dim * 2

        # k_size = int(image_size / np.power(2, repeat_num))
        if norm == 'SN':
            layers.append(spectral_norm(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=1, padding=1)))
        else:
            layers.append(nn.Conv2d(curr_dim, curr_dim * 2, kernel_size=4, stride=1, padding=1))
        layers.append(nn.LeakyReLU(0.01, inplace=True))
        curr_dim = curr_dim * 2

        self.main = nn.Sequential(*layers)
        if norm == 'SN':
            self.conv1 = spectral_norm(nn.Conv2d(curr_dim, 1, kernel_size=4, stride=1, padding=1, bias=False))
            self.classifier_pool = nn.AdaptiveAvgPool2d(1)
            self.classifier_conv = nn.Conv2d(512, 512, 1, 1, 0)
            self.classifier = MarginCosineProduct(512,7)#ArcMarginProduct(512, 7)
            print("Using Large Margin Cosine Loss.")

        else:
            self.conv1 = nn.Conv2d(curr_dim, 1, kernel_size=4, stride=1, padding=1, bias=False)

    def forward(self, x, label):
        if x.ndim == 5:
            x = x.squeeze(0)
        assert x.ndim == 4, x.ndim
        h = self.main(x)  # ([1, 512, 31, 31])
        #print(out_cls.shape)
        out_cls = self.classifier_pool(h)
        #print(out_cls.shape)
        out_cls = self.classifier_conv(out_cls)
        #print(out_cls.shape)
        out_cls = torch.squeeze(out_cls, -1)
        out_cls = torch.squeeze(out_cls, -1)
        out_cls = self.classifier(out_cls, label)
        out_makeup = self.conv1(h)  # torch.Size([1, 1, 30, 30])
        # return out_real.squeeze(), out_makeup.squeeze()
        return out_makeup, out_cls

class SpectralNorm(object):
    def __init__(self):
        self.name = "weight"
        # print(self.name)
        self.power_iterations = 1

    def compute_weight(self, module):
        u = getattr(module, self.name + "_u")
        v = getattr(module, self.name + "_v")
        w = getattr(module, self.name + "_bar")

        height = w.data.shape[0]
        for _ in range(self.power_iterations):
            v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data))
            u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
        # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
        sigma = u.dot(w.view(height, -1).mv(v))
        return w / sigma.expand_as(w)

    @staticmethod
    def apply(module):
        name = "weight"
        fn = SpectralNorm()

        try:
            u = getattr(module, name + "_u")
            v = getattr(module, name + "_v")
            w = getattr(module, name + "_bar")
        except AttributeError:
            w = getattr(module, name)
            height = w.data.shape[0]
            width = w.view(height, -1).data.shape[1]
            u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
            v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
            w_bar = Parameter(w.data)

            # del module._parameters[name]

            module.register_parameter(name + "_u", u)
            module.register_parameter(name + "_v", v)
            module.register_parameter(name + "_bar", w_bar)

        # remove w from parameter list
        del module._parameters[name]

        setattr(module, name, fn.compute_weight(module))

        # recompute weight before every forward()
        module.register_forward_pre_hook(fn)

        return fn

    def remove(self, module):
        weight = self.compute_weight(module)
        delattr(module, self.name)
        del module._parameters[self.name + '_u']
        del module._parameters[self.name + '_v']
        del module._parameters[self.name + '_bar']
        module.register_parameter(self.name, Parameter(weight.data))

    def __call__(self, module, inputs):
        setattr(module, self.name, self.compute_weight(module))

def spectral_norm(module):
    SpectralNorm.apply(module)
    return module

def remove_spectral_norm(module):
    name = 'weight'
    for k, hook in module._forward_pre_hooks.items():
        if isinstance(hook, SpectralNorm) and hook.name == name:
            hook.remove(module)
            del module._forward_pre_hooks[k]
            return module

    raise ValueError("spectral_norm of '{}' not found in {}"
                     .format(name, module))