import os import torch import torchvision.transforms as transforms from PIL import Image import numpy as np from models.networks import define_G import glob class Model(): def __init__(self, device="cpu"): self.device = torch.device(device) self.G_A_net = None self.alias_net = None self.ref_t = None def load(self): with torch.no_grad(): self.G_A_net = define_G(3, 3, 64, "c2pGen", "instance", False, "normal", 0.02, [0]) self.alias_net = define_G(3, 3, 64, "antialias", "instance", False, "normal", 0.02, [0]) G_A_state = torch.load("160_net_G_A.pth" if not os.environ['NET_MODEL'] else os.environ['NET_MODEL'], map_location=str(self.device)) for p in list(G_A_state.keys()): G_A_state["module."+str(p)] = G_A_state.pop(p) self.G_A_net.load_state_dict(G_A_state) alias_state = torch.load("alias_net.pth" if not os.environ['ALIAS_MODEL'] else os.environ['ALIAS_MODEL'], map_location=str(self.device)) for p in list(alias_state.keys()): alias_state["module."+str(p)] = alias_state.pop(p) self.alias_net.load_state_dict(alias_state) ref_img = Image.open("reference.png").convert('L') self.ref_t = process(greyscale(ref_img)).to(self.device) def pixelize(self, in_img, out_img): with torch.no_grad(): in_img = Image.open(in_img).convert('RGB') in_t = process(in_img).to(self.device) out_t = self.alias_net(self.G_A_net(in_t, self.ref_t)) save(out_t, out_img) def pixelize_modified(self, in_img, pixel_size, upscale_after) -> Image.Image: with torch.no_grad(): in_img = in_img.convert('RGB') # limit in_img size to 1024x1024 so it didn't destroyed by large image if in_img.size[0] > 1024 or in_img.size[1] > 1024: in_img.thumbnail((1024, 1024), Image.NEAREST) in_img.resize((in_img.size[0] * 4 // pixel_size, in_img.size[1] * 4 // pixel_size)) in_t = process(in_img).to(self.device) out_t = self.alias_net(self.G_A_net(in_t, self.ref_t)) img = to_image(out_t, pixel_size, upscale_after) return img def to_image(tensor, pixel_size, upscale_after): img = tensor.data[0].cpu().float().numpy() img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0 img = img.astype(np.uint8) img = Image.fromarray(img) img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST) if upscale_after: img = img.resize((img.size[0]*pixel_size, img.size[1]*pixel_size), resample=Image.Resampling.NEAREST) return img def greyscale(img): gray = np.array(img.convert('L')) tmp = np.expand_dims(gray, axis=2) tmp = np.concatenate((tmp, tmp, tmp), axis=-1) return Image.fromarray(tmp) def process(img): ow,oh = img.size nw = int(round(ow / 4) * 4) nh = int(round(oh / 4) * 4) left = (ow - nw)//2 top = (oh - nh)//2 right = left + nw bottom = top + nh img = img.crop((left, top, right, bottom)) trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) return trans(img)[None, :, :, :] def save(tensor, file): img = tensor.data[0].cpu().float().numpy() img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0 img = img.astype(np.uint8) img = Image.fromarray(img) img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST) img = img.resize((img.size[0]*4, img.size[1]*4), resample=Image.Resampling.NEAREST) img.save(file) def pixelize_cli(): import argparse import os parser = argparse.ArgumentParser(description='Pixelization') parser.add_argument('--input', type=str, default=None, required=True, help='path to image or directory') parser.add_argument('--output', type=str, default=None, required=False, help='path to save image/images') parser.add_argument('--cpu', action='store_true', help='use CPU instead of GPU') args = parser.parse_args() in_path = args.input out_path = args.output use_cpu = args.cpu if not os.path.exists("alias_net.pth" if not os.environ['ALIAS_MODEL'] else os.environ['ALIAS_MODEL']): print("missing models") pairs = [] if os.path.isdir(in_path): in_images = glob.glob(in_path + "/*.png") + glob.glob(in_path + "/*.jpg") if not out_path: out_path = os.path.join(in_path, "outputs") if not os.path.exists(out_path): os.makedirs(out_path) elif os.path.isfile(out_path): print("output cant be a file if input is a directory") return for i in in_images: pairs += [(i, i.replace(in_path, out_path))] elif os.path.isfile(in_path): if not out_path: base, ext = os.path.splitext(in_path) out_path = base+"_pixelized"+ext else: if os.path.isdir(out_path): _, file = os.path.split(in_path) out_path = os.path.join(out_path, file) pairs = [(in_path, out_path)] m = Model(device = "cpu" if use_cpu else "cuda") m.load() for in_file, out_file in pairs: print("PROCESSING", in_file, "TO", out_file) m.pixelize(in_file, out_file) if __name__ == "__main__": pixelize_cli()