File size: 12,365 Bytes
ed02397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import transformers
from transformers import AutoTokenizer
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
)
from transformers import pipeline, set_seed, LogitsProcessor
from transformers.generation.logits_process import TopPLogitsWarper, TopKLogitsWarper
import torch
from scipy.special import gamma, gammainc, gammaincc, betainc
from scipy.optimize import fminbound
import numpy as np

import os

hf_token = os.getenv('HF_TOKEN')


device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')

def hash_tokens(input_ids: torch.LongTensor, key: int):
    seed = key
    salt = 35317
    for i in input_ids:
        seed = (seed * salt + i.item()) % (2 ** 64 - 1)
    return seed

class WatermarkingLogitsProcessor(LogitsProcessor):
    def __init__(self, n, key, messages, window_size, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.batch_size = len(messages)
        self.generators = [ torch.Generator(device=device) for _ in range(self.batch_size) ]

        self.n = n
        self.key = key
        self.window_size = window_size
        if not self.window_size:
            for b in range(self.batch_size):
                self.generators[b].manual_seed(self.key)

        self.messages = messages

class WatermarkingAaronsonLogitsProcessor( WatermarkingLogitsProcessor):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:       
        # get random uniform variables
        B, V = scores.shape

        r = torch.zeros_like(scores)
        for b in range(B):
            if self.window_size:
                window = input_ids[b, -self.window_size:]
                seed = hash_tokens(window, self.key)
                self.generators[b].manual_seed(seed)
            r[b] = torch.rand(self.n, generator=self.generators[b], device=self.generators[b].device).log().roll(-self.messages[b])
        # generate n but keep only V, as we want to keep the pseudo-random sequences in sync with the decoder
        r = r[:,:V]

        # modify law as r^(1/p)
        # Since we want to return logits (logits processor takes and outputs logits),
        # we return log(q), hence torch.log(r) * torch.log(torch.exp(1/p)) = torch.log(r) / p
        return r / scores.exp()

class WatermarkingKirchenbauerLogitsProcessor(WatermarkingLogitsProcessor):
    def __init__(self, *args,
                 gamma = 0.5,
                 delta = 4.0,
                 **kwargs):
        super().__init__(*args, **kwargs)
        self.gamma = gamma
        self.delta = delta

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        B, V = scores.shape

        for b in range(B):
            if self.window_size:
                window = input_ids[b, -self.window_size:]
                seed = hash_tokens(window, self.key)
                self.generators[b].manual_seed(seed)
            vocab_permutation = torch.randperm(self.n, generator=self.generators[b], device=self.generators[b].device)
            greenlist = vocab_permutation[:int(self.gamma * self.n)] # gamma * n
            bias = torch.zeros(self.n).to(scores.device)
            bias[greenlist] = self.delta
            bias = bias.roll(-self.messages[b])[:V]
            scores[b] += bias # add bias to greenlist words

        return scores

class Watermarker(object):
    def __init__(self, modelname="facebook/opt-350m", window_size = 0, payload_bits = 0, logits_processor = None, *args, **kwargs):
        self.tokenizer = AutoTokenizer.from_pretrained(modelname, use_auth_token=hf_token)
        self.model = AutoModelForCausalLM.from_pretrained(modelname, use_auth_token=hf_token).to(device)
        self.model.eval()
        self.window_size = window_size

        # preprocessing wrappers
        self.logits_processor = logits_processor or []

        self.payload_bits = payload_bits
        self.V = max(2**payload_bits, self.model.config.vocab_size)
        self.generator = torch.Generator(device=device)


    def embed(self, key=42, messages=[1234], prompt="", max_length=30, method='aaronson'):

        B = len(messages) # batch size
        length = max_length
         
        # compute capacity
        if self.payload_bits:
            assert min([message >= 0 and message < 2**self.payload_bits for message in messages])

        # tokenize prompt
        inputs = self.tokenizer([ prompt ] * B, return_tensors="pt")

        if method == 'aaronson':
            # generate with greedy search
            generated_ids = self.model.generate(inputs.input_ids.to(device), max_length=max_length, do_sample=False,
                                                logits_processor = self.logits_processor + [
                                                    WatermarkingAaronsonLogitsProcessor(n=self.V,
                                                                                        key=key,
                                                                                        messages=messages,
                                                                                        window_size = self.window_size)])
        elif method == 'kirchenbauer':
            # use sampling
            generated_ids = self.model.generate(inputs.input_ids.to(device), max_length=max_length, do_sample=True,
                                                logits_processor = self.logits_processor + [
                                                    WatermarkingKirchenbauerLogitsProcessor(n=self.V,
                                                                                            key=key,
                                                                                            messages=messages,
                                                                                            window_size = self.window_size)])
        elif method == 'greedy':
            # generate with greedy search
            generated_ids = self.model.generate(inputs.input_ids.to(device), max_length=max_length, do_sample=False,
                                                logits_processor = self.logits_processor)
        elif method == 'sampling':
            # generate with greedy search
            generated_ids = self.model.generate(inputs.input_ids.to(device), max_length=max_length, do_sample=True,
                                                logits_processor = self.logits_processor)
        else:
           raise Exception('Unknown method %s' % method)
        decoded_texts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)

        return decoded_texts
    
    def detect(self, attacked_texts, key=42, method='aaronson', gamma=0.5, prompts=None):
        if(prompts==None):
            prompts = [""] * len(attacked_texts)

        generator = self.generator

        #print("attacked_texts = ", attacked_texts)

        cdfs = []
        ms = []

        MAX = 2**self.payload_bits
        
        # tokenize input
        inputs = self.tokenizer(attacked_texts, return_tensors="pt", padding=True, return_attention_mask=True)
                        
        input_ids = inputs["input_ids"].to(self.model.device)
        attention_masks = inputs["attention_mask"].to(self.model.device)

        B,T = input_ids.shape

        if method == 'aaronson_neyman_pearson':
            # compute logits
            outputs = self.model.forward(input_ids, return_dict=True)
            logits = outputs['logits']
            # TODO
            # reapply logits processors to get same distribution
            #for i in range(T):
            #    for processor in self.logits_processor:
            #        logits[:,i] = processor(input_ids[:, :i], logits[:, i])

            probs = logits.softmax(dim=-1)
            ps = torch.gather(probs, 2, input_ids[:,1:,None]).squeeze_(-1)


        seq_len = input_ids.shape[1]
        length = seq_len

        V = self.V
                
        Z = torch.zeros(size=(B, V), dtype=torch.float32, device=device)


        # keep a history of contexts we have already seen,
        # to exclude them from score aggregation and allow
        # correct p-value computation under H0
        history = [set() for _ in range(B)]

        attention_masks_prompts = self.tokenizer(prompts, return_tensors="pt", padding=True, return_attention_mask=True)["attention_mask"]
        prompts_length = torch.sum(attention_masks_prompts, dim=1)
        for b in range(B):
            attention_masks[b, :prompts_length[b]] = 0
            if not self.window_size:
                generator.manual_seed(key)
            # We can go from seq_len - prompt_len, need to change +1 to + prompt_len
            for i in range(seq_len-1):
            
                if self.window_size:
                    window = input_ids[b, max(0, i-self.window_size+1):i+1]
                    #print("window = ", window)
                    seed = hash_tokens(window, key)
                    if seed not in history[b]:
                        generator.manual_seed(seed)
                        history[b].add(seed)
                    else:
                        # ignore the token
                        attention_masks[b, i+1] = 0

                if not attention_masks[b,i+1]:
                    continue

                token = int(input_ids[b,i+1])

                if method in {'aaronson', 'aaronson_simplified', 'aaronson_neyman_pearson'}:
                    R = torch.rand(V, generator = generator, device = generator.device)

                if method == 'aaronson':
                    r = -(1-R).log()
                elif method in {'aaronson_simplified', 'aaronson_neyman_pearson'}:
                    r = -R.log()
                elif method == 'kirchenbauer':
                    r = torch.zeros(V, device=device)
                    vocab_permutation = torch.randperm(V, generator = generator, device=generator.device)
                    greenlist = vocab_permutation[:int(gamma * V)]
                    r[greenlist] = 1
                else:
                    raise Exception('Unknown method %s' % method)

                if method in {'aaronson', 'aaronson_simplified', 'kirchenbauer'}:
                    # independent of probs
                    Z[b] += r.roll(-token)
                elif method == 'aaronson_neyman_pearson':
                    # Neyman-Pearson
                    Z[b] += r.roll(-token) * (1/ps[b,i] - 1)

        for b in range(B):
            if method in {'aaronson', 'kirchenbauer'}:
                m = torch.argmax(Z[b,:MAX])
            elif method in {'aaronson_simplified', 'aaronson_neyman_pearson'}:
                m = torch.argmin(Z[b,:MAX])

            i = int(m)
            S = Z[b, i].item()
            m = i

            # actual sequence length
            k = torch.sum(attention_masks[b]).item() - 1

            if method == 'aaronson':
                cdf = gammaincc(k, S)
            elif method == 'aaronson_simplified':
                cdf = gammainc(k, S)
            elif method == 'aaronson_neyman_pearson':
                # Chernoff bound
                ratio = ps[b,:k] / (1 - ps[b,:k])
                E = (1/ratio).sum()

                if S > E:
                    cdf = 1.0
                else:
                    # to compute p-value we must solve for c*:
                    # (1/(c* + ps/(1-ps))).sum() = S
                    func = lambda c : (((1 / (c + ratio)).sum() - S)**2).item()
                    c1 = (k / S - torch.min(ratio)).item()
                    print("max = ", c1)
                    c = fminbound(func, 0, c1)
                    print("solved c = ", c)
                    print("solved s = ", ((1/(c + ratio)).sum()).item())
                    # upper bound
                    cdf = torch.exp(torch.sum(-torch.log(1 + c / ratio)) + c * S)
            elif method == 'kirchenbauer':
                cdf = betainc(S, k - S + 1, gamma)

            if cdf > min(1 / MAX, 1e-5):
                cdf = 1 - (1 - cdf)**MAX # true value
            else:
                cdf = cdf * MAX # numerically stable upper bound
            cdfs.append(float(cdf))
            ms.append(m)

        return cdfs, ms