import json import math import random import os import streamlit as st import lyricsgenius import transformers from transformers import AutoTokenizer, AutoModelForCausalLM st.set_page_config(page_title="HuggingArtists") st.title("HuggingArtists") st.sidebar.markdown( """
""", unsafe_allow_html=True, ) st.sidebar.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.header("Generation settings:") num_sequences = st.sidebar.number_input( "Number of sequences to generate", min_value=1, value=5, help="The amount of generated texts", ) min_length = st.sidebar.number_input( "Minimum length of the sequence", min_value=1, value=100, help="The minimum length of the sequence to be generated", ) max_length= st.sidebar.number_input( "Maximum length of the sequence", min_value=1, value=160, help="The maximum length of the sequence to be generated", ) temperature = st.sidebar.slider( "Temperature", min_value=0.0, max_value=3.0, step=0.01, value=1.0, help="The value used to module the next token probabilities", ) top_p = st.sidebar.slider( "Top-P", min_value=0.0, max_value=1.0, step=0.01, value=0.95, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", ) top_k= st.sidebar.number_input( "Top-K", min_value=0, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", ) caption = ( "In [HuggingArtists](https://github.com/AlekseyKorshuk/huggingartist), we can generate lyrics by a specific artist. This was made by fine-tuning a pre-trained [HuggingFace Transformer](https://huggingface.co) on parsed datasets from [Genius](https://genius.com)." ) st.markdown("[HuggingArtists](https://github.com/AlekseyKorshuk/huggingartist) - Train a model to generate lyrics 🎵") st.markdown(caption) st.subheader("Settings:") artist_name = st.text_input("Artist name:", "Eminem") start = st.text_input("Beginning of the song:", "But for me to rap like a computer") TOKEN = "q_JK_BFy9OMiG7fGTzL-nUto9JDv3iXI24aYRrQnkOvjSCSbY4BuFIindweRsr5I" genius = lyricsgenius.Genius(TOKEN) model_html = """ """ def post_process(output_sequences): predictions = [] generated_sequences = [] max_repeat = 2 # decode prediction for generated_sequence_idx, generated_sequence in enumerate(output_sequences): generated_sequence = generated_sequence.tolist() text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True) generated_sequences.append(text.strip()) for i, g in enumerate(generated_sequences): res = str(g).replace('\n\n\n', '\n').replace('\n\n', '\n') lines = res.split('\n') # print(lines) # i = max_repeat # while i != len(lines): # remove_count = 0 # for index in range(0, max_repeat): # # print(i - index - 1, i - index) # if lines[i - index - 1] == lines[i - index]: # remove_count += 1 # if remove_count == max_repeat: # lines.pop(i) # i -= 1 # else: # i += 1 predictions.append('\n'.join(lines)) return predictions if st.button("Run"): model_name = None with st.spinner(text=f"Searching for {artist_name } in Genius..."): artist = genius.search_artist(artist_name, max_songs=0, get_full_info=False) if artist is not None: artist_dict = genius.artist(artist.id)['artist'] artist_url = str(artist_dict['url']) model_name = artist_url[artist_url.rfind('/') + 1:].lower() st.markdown(model_html.replace("USER_PROFILE",artist.image_url).replace("USER_NAME",artist.name).replace("USER_HANDLE",model_name), unsafe_allow_html=True) else: st.markdown(f"Could not find {artist_name}! Be sure that he/she exists in [Genius](https://genius.com/).") if model_name is not None: with st.spinner(text=f"Downloading the model of {artist_name }..."): model = None tokenizer = None try: tokenizer = AutoTokenizer.from_pretrained(f"huggingartists/{model_name}") model = AutoModelForCausalLM.from_pretrained(f"huggingartists/{model_name}") except Exception as ex: # st.markdown(ex) st.markdown(f"Model for this artist does not exist yet. Create it in just 5 min with [Colab Notebook](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb):") st.markdown( """ """, unsafe_allow_html=True, ) if model is not None: with st.spinner(text=f"Generating lyrics..."): encoded_prompt = tokenizer(start, add_special_tokens=False, return_tensors="pt").input_ids encoded_prompt = encoded_prompt.to(model.device) # prediction output_sequences = model.generate( input_ids=encoded_prompt, max_length=max_length, min_length=min_length, temperature=float(temperature), top_p=float(top_p), top_k=int(top_k), do_sample=True, repetition_penalty=1.0, num_return_sequences=num_sequences ) # Post-processing predictions = post_process(output_sequences) st.subheader("Results") for prediction in predictions: st.text(prediction) st.subheader("Please star this repository and join my Telegram Channel:") st.markdown( """ """, unsafe_allow_html=True, )