import random import io import zipfile import requests import json import base64 import math import gradio as gr from PIL import Image jwt_token = '' url = "https://image.novelai.net/ai/generate-image" headers = {} def set_token(token): global jwt_token, headers if jwt_token == token: return jwt_token = token headers = { "Authorization": f"Bearer {jwt_token}", "Content-Type": "application/json", "Origin": "https://novelai.net", "Referer": "https://novelai.net/" } def get_remain_anlas(): try: data = requests.get("https://api.novelai.net/user/data", headers=headers).content anlas = json.loads(data)['subscription']['trainingStepsLeft'] return anlas['fixedTrainingStepsLeft'] + anlas['purchasedTrainingSteps'] except: return '获取失败,err:' + str(data) def calculate_cost(width, height, steps=28, sm=False, dyn=False, strength=1, rmbg=False): pixels = width * height if pixels <= 1048576 and steps <= 28 and not rmbg: return 0 dyn = sm and dyn L = math.ceil(2951823174884865e-21 * pixels + 5.753298233447344e-7 * pixels * steps) L *= 1.4 if dyn else (1.2 if sm else 1) L = math.ceil(L * strength) return L * 3 + 5 if rmbg else L def generate_novelai_image( input_text="", negative_prompt="", seed=-1, scale=5.0, width=1024, height=1024, steps=28, sampler="k_euler", schedule='native', smea=False, dyn=False, dyn_threshold=False, cfg_rescale=0, ref_images=None, info_extracts=[], ref_strs=[], i2i_image=None, i2i_str=0.7, i2i_noise=0, overlay=True, inp_img=None, selection='i2i' ): # Assign a random seed if seed is -1 if seed == -1: seed = random.randint(0, 2**32 - 1) # Define the payload payload = { "action": "generate", "input": input_text, "model": "nai-diffusion-3", "parameters": { "width": width, "height": height, "scale": scale, "sampler": sampler, "steps": steps, "n_samples": 1, "ucPreset": 0, "add_original_image": True, "cfg_rescale": cfg_rescale, "controlnet_strength": 1, "dynamic_thresholding": dyn_threshold, "params_version": 1, "legacy": False, "legacy_v3_extend": False, "negative_prompt": negative_prompt, "noise": i2i_noise, "noise_schedule": schedule, "qualityToggle": True, "reference_information_extracted_multiple": info_extracts, "reference_strength_multiple": ref_strs, "seed": seed, "sm": smea, "sm_dyn": dyn, "uncond_scale": 1, "add_original_image": overlay } } if ref_images is not None: payload['parameters']['reference_image_multiple'] = [image2base64(image[0]) for image in ref_images] if selection == 'inp' and inp_img['background'].getextrema()[3][1] > 0: payload['action'] = "infill" payload['model'] = 'nai-diffusion-3-inpainting' payload['parameters']['mask'] = image2base64(inp_img['layers'][0]) payload['parameters']['image'] = image2base64(inp_img['background']) payload['parameters']['extra_noise_seed'] = seed if i2i_image is not None and selection == 'i2i': payload['action'] = "img2img" payload['parameters']['image'] = image2base64(i2i_image) payload['parameters']['strength'] = i2i_str payload['parameters']['extra_noise_seed'] = seed # Send the POST request try: response = requests.post(url, json=payload, headers=headers, timeout=180) except: raise gr.Error('NAI response timeout') # Process the response if response.headers.get('Content-Type') == 'binary/octet-stream': zipfile_in_memory = io.BytesIO(response.content) with zipfile.ZipFile(zipfile_in_memory, 'r') as zip_ref: file_names = zip_ref.namelist() if file_names: with zip_ref.open(file_names[0]) as file: return file.read(), payload else: messages = json.loads(response.content) raise gr.Error(messages["statusCode"] + ": " + messages["message"]) else: messages = json.loads(response.content) raise gr.Error(messages["statusCode"] + ": " + messages["message"]) def image_from_bytes(data): img_file = io.BytesIO(data) img_file.seek(0) return Image.open(img_file) def image2base64(img): output_buffer = io.BytesIO() img.save(output_buffer, format='PNG' if img.mode=='RGBA' else 'JPEG') byte_data = output_buffer.getvalue() base64_str = base64.b64encode(byte_data).decode() return base64_str def augment_image(image, width, height, req_type, selection, factor=1, defry=0, prompt=''): if selection == "scale": width = int(width * factor) height = int(height * factor) image = image.resize((width, height)) req_type = {"移除背景": "bg-removal", "素描": "sketch", "线稿": "lineart", "上色": "colorize", "更改表情": "emotion", "去聊天框": "declutter"}[req_type] base64img = image2base64(image) payload = {"image": base64img, "width": width, "height": height, "req_type": req_type} if req_type == "colorize" or req_type == "emotion": payload["defry"] = defry payload["prompt"] = prompt try: response = requests.post("https://image.novelai.net/ai/augment-image", json=payload, headers=headers, timeout=60) except: raise gr.Error('NAI response timeout') # Process the response if response.headers.get('Content-Type') == 'binary/octet-stream': zipfile_in_memory = io.BytesIO(response.content) with zipfile.ZipFile(zipfile_in_memory, 'r') as zip_ref: if len(zip_ref.namelist()): images = [] for file_name in zip_ref.namelist(): with zip_ref.open(file_name) as file: images.append(image_from_bytes(file.read())) return images else: messages = json.loads(response.content) raise gr.Error(messages["statusCode"] + ": " + messages["message"]) else: messages = json.loads(response.content) raise gr.Error(messages["statusCode"] + ": " + messages["message"])