import numpy as np import cv2 import matplotlib.pyplot as plt from numba import jit import gradio as gr @jit(nopython=True, parallel=True) def poisson_sharpening_rgb(image, alpha): height, width, channels = image.shape sharpened = np.zeros_like(image, dtype=np.float32) for c in range(channels): for i in range(height): for j in range(width): # Compute indices for neighboring pixels left = max(0, j - 1) right = min(width - 1, j + 1) top = max(0, i - 1) bottom = min(height - 1, i + 1) # Compute differences with neighboring pixels diff_left = float(image[i, j, c]) - float(image[i, left, c]) diff_right = float(image[i, j, c]) - float(image[i, right, c]) diff_top = float(image[i, j, c]) - float(image[top, j, c]) diff_bottom = float(image[i, j, c]) - float(image[bottom, j, c]) # Compute sharpened pixel value sharpened[i, j, c] = min(max( float(image[i, j, c]) + alpha * (diff_left + diff_right + diff_top + diff_bottom), 0.0), 255.0) return sharpened.astype(np.uint8) def sharpen_image(image, alpha): # Ensure the image is in RGB format if image.shape[2] == 4: # If RGBA, convert to RGB image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) elif len(image.shape) == 2: # If grayscale, convert to RGB image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) # Apply sharpening sharpened = poisson_sharpening_rgb(image, alpha) return sharpened # Create examples list examples = [ ["img1.jpg", 2.0], ["img2.PNG", 2.0], ] # Create the Gradio interface iface = gr.Interface( fn=sharpen_image, inputs=[ gr.Image(label="Input Image", type="numpy"), gr.Slider(minimum=1.0, maximum=15.0, step=0.01, value=2.0, label="Sharpening Strength (alpha)") ], outputs=gr.Image(label="Sharpened Image"), title="Poisson Image Sharpening", description="Upload an image or choose from the examples, then adjust the sharpening strength to enhance edges and details.", theme='bethecloud/storj_theme', examples=examples, cache_examples=True ) iface.launch()