Audio-Steganography / steganography.py
Politrees's picture
Update steganography.py
c9496c6 verified
raw
history blame
6.65 kB
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import librosa
import librosa.display
import gradio as gr
import soundfile as sf
import os
# Function for creating a spectrogram image with text
def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5):
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
if os.path.exists(font_path):
font = ImageFont.truetype(font_path, max_font_size)
else:
font = ImageFont.load_default()
image = Image.new('L', (base_width, height), 'black')
draw = ImageDraw.Draw(image)
text_width = 0
for char in text:
text_bbox = draw.textbbox((0, 0), char, font=font)
text_width += text_bbox[2] - text_bbox[0] + letter_spacing
text_width -= letter_spacing
if text_width + margin * 2 > base_width:
width = text_width + margin * 2
else:
width = base_width
image = Image.new('L', (width, height), 'black')
draw = ImageDraw.Draw(image)
text_x = (width - text_width) // 2
text_y = (height - (text_bbox[3] - text_bbox[1])) // 2
for char in text:
draw.text((text_x, text_y), char, font=font, fill='white')
char_bbox = draw.textbbox((0, 0), char, font=font)
text_x += char_bbox[2] - char_bbox[0] + letter_spacing
image = np.array(image)
image = np.where(image > 0, 255, image)
return image
# Converting an image to audio
def spectrogram_image_to_audio(image, sr=22050):
flipped_image = np.flipud(image)
S = flipped_image.astype(np.float32) / 255.0 * 100.0
y = librosa.griffinlim(S)
return y
# Function for creating an audio file and spectrogram from text
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing)
y = spectrogram_image_to_audio(spec_image)
audio_path = 'output.wav'
sf.write(audio_path, y, 22050)
image_path = 'spectrogram.png'
plt.imsave(image_path, spec_image, cmap='gray')
return audio_path, image_path
# Function for displaying the spectrogram of an audio file
def display_audio_spectrogram(audio_path):
y, sr = librosa.load(audio_path)
S = librosa.feature.melspectrogram(y=y, sr=sr)
S_dB = librosa.power_to_db(S, ref=np.max)
plt.figure(figsize=(10, 4))
librosa.display.specshow(S_dB)
plt.tight_layout()
spectrogram_path = 'uploaded_spectrogram.png'
plt.savefig(spectrogram_path)
plt.close()
return spectrogram_path
# Converting a downloaded image to an audio spectrogram
def image_to_spectrogram_audio(image_path, sr=22050):
image = Image.open(image_path).convert('L')
image = np.array(image)
y = spectrogram_image_to_audio(image, sr)
audio_path = 'image_to_audio_output.wav'
sf.write(audio_path, y, sr)
return audio_path
# Gradio interface
with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as iface:
with gr.Group():
with gr.Row(variant='panel'):
with gr.Column():
gr.HTML("<center><h2><a href='https://t.me/pol1trees'>Telegram Channel</a></h2></center>")
with gr.Column():
gr.HTML("<center><h2><a href='https://t.me/+GMTP7hZqY0E4OGRi'>Telegram Chat</a></h2></center>")
with gr.Column():
gr.HTML("<center><h2><a href='https://www.youtube.com/channel/UCHb3fZEVxUisnqLqCrEM8ZA'>YouTube</a></h2></center>")
with gr.Column():
gr.HTML("<center><h2><a href='https://github.com/Bebra777228/Audio-Steganography'>GitHub</a></h2></center>")
with gr.Tab("Text to Spectrogram"):
with gr.Group():
text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text")
with gr.Row(variant='panel'):
base_width = gr.Slider(value=512, label="Image Width", visible=False)
height = gr.Slider(value=256, label="Image Height", visible=False)
max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size")
margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent")
letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing")
generate_button = gr.Button("Generate")
with gr.Column(variant='panel'):
with gr.Group():
output_audio = gr.Audio(type="filepath", label="Generated audio")
output_image = gr.Image(type="filepath", label="Spectrogram")
def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
return create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
generate_button.click(
gradio_interface_fn,
inputs=[text, base_width, height, max_font_size, margin, letter_spacing],
outputs=[output_audio, output_image]
)
with gr.Tab("Image to Spectrogram"):
with gr.Group():
with gr.Row(variant='panel'):
upload_image = gr.Image(type="filepath", label="Upload image")
convert_button = gr.Button("Convert to audio")
with gr.Column(variant='panel'):
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
def gradio_image_to_audio_fn(upload_image):
return image_to_spectrogram_audio(upload_image)
convert_button.click(
gradio_image_to_audio_fn,
inputs=[upload_image],
outputs=[output_audio_from_image]
)
with gr.Tab("Audio Spectrogram"):
with gr.Group():
with gr.Row(variant='panel'):
upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
decode_button = gr.Button("Show spectrogram", scale=2)
with gr.Column(variant='panel'):
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
def gradio_decode_fn(upload_audio):
return display_audio_spectrogram(upload_audio)
decode_button.click(
gradio_decode_fn,
inputs=[upload_audio],
outputs=[decoded_image]
)
iface.launch(share=True)