Spaces:
Runtime error
Runtime error
Pranjal12345
commited on
Commit
•
3381d4a
1
Parent(s):
cbb1092
dsds
Browse files
main.py
CHANGED
@@ -1,57 +1,100 @@
|
|
1 |
-
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
2 |
|
3 |
|
4 |
-
# from fastapi import FastAPI
|
5 |
-
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
-
# import librosa
|
7 |
-
# import uvicorn
|
8 |
|
9 |
-
# app = FastAPI()
|
10 |
|
11 |
-
# processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
12 |
-
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
13 |
-
# model.config.forced_decoder_ids = None
|
14 |
|
15 |
-
# audio_file_path = "output.mp3"
|
16 |
|
17 |
-
# audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
18 |
|
19 |
-
# @app.get("/")
|
20 |
-
# def transcribe_audio():
|
21 |
-
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
22 |
|
23 |
-
# predicted_ids = model.generate(input_features)
|
24 |
-
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
25 |
|
26 |
-
# return {"transcription": transcription[0]}
|
27 |
|
28 |
|
29 |
-
# if __name__ == "__main__":
|
30 |
-
# import uvicorn
|
31 |
-
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
-
# if __name__=='__main__':
|
35 |
-
# uvicorn.run('main:app', reload=True)
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
-
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
41 |
-
#curl -X GET "http://localhost:8000/?text=I%20like%20Apples"
|
42 |
-
#http://localhost:8000/?text=I%20like%20Apples
|
43 |
|
44 |
|
|
|
|
|
|
|
|
|
45 |
|
|
|
46 |
|
|
|
|
|
|
|
|
|
47 |
|
|
|
|
|
48 |
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
53 |
# import librosa
|
|
|
54 |
# import uvicorn
|
|
|
55 |
|
56 |
# app = FastAPI()
|
57 |
|
@@ -60,15 +103,30 @@
|
|
60 |
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
61 |
# model.config.forced_decoder_ids = None
|
62 |
|
63 |
-
# # Path to your audio file
|
64 |
-
# audio_file_path = "/home/pranjal/Downloads/output.mp3"
|
65 |
-
|
66 |
-
# # Read the audio file
|
67 |
-
# audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
68 |
-
|
69 |
# @app.get("/")
|
70 |
-
# def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# # Process the audio data using the Whisper processor
|
|
|
72 |
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
73 |
|
74 |
# # Generate transcription
|
@@ -76,17 +134,18 @@
|
|
76 |
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
77 |
|
78 |
# return {"transcription": transcription[0]}
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# if __name__ == "__main__":
|
81 |
-
# import uvicorn
|
82 |
-
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
83 |
|
84 |
|
85 |
-
# if __name__=='__app__':
|
86 |
-
# uvicorn.run('main:app', reload=True)
|
87 |
|
88 |
|
89 |
|
|
|
90 |
|
91 |
|
92 |
from fastapi import FastAPI, UploadFile, File
|
@@ -98,10 +157,14 @@ import io
|
|
98 |
|
99 |
app = FastAPI()
|
100 |
|
101 |
-
# Load model and processor
|
102 |
-
processor = WhisperProcessor.from_pretrained("openai/whisper-
|
103 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-
|
104 |
-
model.config.forced_decoder_ids = None
|
|
|
|
|
|
|
|
|
105 |
|
106 |
@app.get("/")
|
107 |
def read_root():
|
@@ -126,14 +189,15 @@ async def transcribe_audio(audio_file: UploadFile):
|
|
126 |
audio_data = await audio_file.read()
|
127 |
|
128 |
# Process the audio data using the Whisper processor
|
129 |
-
audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
130 |
-
input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
131 |
|
132 |
-
# Generate transcription
|
133 |
-
predicted_ids = model.generate(input_features)
|
134 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
|
|
135 |
|
136 |
-
return {"transcription":
|
137 |
except Exception as e:
|
138 |
return {"error": str(e)}
|
139 |
|
|
|
1 |
+
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
2 |
|
3 |
|
4 |
+
# # from fastapi import FastAPI
|
5 |
+
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
+
# # import librosa
|
7 |
+
# # import uvicorn
|
8 |
|
9 |
+
# # app = FastAPI()
|
10 |
|
11 |
+
# # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
12 |
+
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
13 |
+
# # model.config.forced_decoder_ids = None
|
14 |
|
15 |
+
# # audio_file_path = "output.mp3"
|
16 |
|
17 |
+
# # audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
18 |
|
19 |
+
# # @app.get("/")
|
20 |
+
# # def transcribe_audio():
|
21 |
+
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
22 |
|
23 |
+
# # predicted_ids = model.generate(input_features)
|
24 |
+
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
25 |
|
26 |
+
# # return {"transcription": transcription[0]}
|
27 |
|
28 |
|
29 |
+
# # if __name__ == "__main__":
|
30 |
+
# # import uvicorn
|
31 |
+
# # uvicorn.run(app, host="0.0.0.0", port=8000)
|
32 |
+
|
33 |
+
|
34 |
+
# # if __name__=='__main__':
|
35 |
+
# # uvicorn.run('main:app', reload=True)
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
41 |
+
# #curl -X GET "http://localhost:8000/?text=I%20like%20Apples"
|
42 |
+
# #http://localhost:8000/?text=I%20like%20Apples
|
43 |
|
44 |
|
|
|
|
|
45 |
|
46 |
|
47 |
|
48 |
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
+
# # from fastapi import FastAPI
|
52 |
+
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
53 |
+
# # import librosa
|
54 |
+
# # import uvicorn
|
55 |
|
56 |
+
# # app = FastAPI()
|
57 |
|
58 |
+
# # # Load model and processor
|
59 |
+
# # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
60 |
+
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
61 |
+
# # model.config.forced_decoder_ids = None
|
62 |
|
63 |
+
# # # Path to your audio file
|
64 |
+
# # audio_file_path = "/home/pranjal/Downloads/output.mp3"
|
65 |
|
66 |
+
# # # Read the audio file
|
67 |
+
# # audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
68 |
|
69 |
+
# # @app.get("/")
|
70 |
+
# # def transcribe_audio():
|
71 |
+
# # # Process the audio data using the Whisper processor
|
72 |
+
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
73 |
+
|
74 |
+
# # # Generate transcription
|
75 |
+
# # predicted_ids = model.generate(input_features)
|
76 |
+
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
77 |
+
|
78 |
+
# # return {"transcription": transcription[0]}
|
79 |
+
|
80 |
+
# # if __name__ == "__main__":
|
81 |
+
# # import uvicorn
|
82 |
+
# # uvicorn.run(app, host="0.0.0.0", port=8000)
|
83 |
+
|
84 |
+
|
85 |
+
# # if __name__=='__app__':
|
86 |
+
# # uvicorn.run('main:app', reload=True)
|
87 |
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
# from fastapi import FastAPI, UploadFile, File
|
93 |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
94 |
# import librosa
|
95 |
+
# from fastapi.responses import HTMLResponse
|
96 |
# import uvicorn
|
97 |
+
# import io
|
98 |
|
99 |
# app = FastAPI()
|
100 |
|
|
|
103 |
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
104 |
# model.config.forced_decoder_ids = None
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
# @app.get("/")
|
107 |
+
# def read_root():
|
108 |
+
# html_form = """
|
109 |
+
# <html>
|
110 |
+
# <body>
|
111 |
+
# <h2>ASR Transcription</h2>
|
112 |
+
# <form action="/transcribe" method="post" enctype="multipart/form-data">
|
113 |
+
# <label for="audio_file">Upload an audio file (MP3 or WAV):</label>
|
114 |
+
# <input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br>
|
115 |
+
# <input type="submit" value="Transcribe">
|
116 |
+
# </form>
|
117 |
+
# </body>
|
118 |
+
# </html>
|
119 |
+
# """
|
120 |
+
# return HTMLResponse(content=html_form, status_code=200)
|
121 |
+
|
122 |
+
# @app.post("/transcribe")
|
123 |
+
# async def transcribe_audio(audio_file: UploadFile):
|
124 |
+
# try:
|
125 |
+
# # Read the uploaded audio file
|
126 |
+
# audio_data = await audio_file.read()
|
127 |
+
|
128 |
# # Process the audio data using the Whisper processor
|
129 |
+
# audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
130 |
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
131 |
|
132 |
# # Generate transcription
|
|
|
134 |
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
135 |
|
136 |
# return {"transcription": transcription[0]}
|
137 |
+
# except Exception as e:
|
138 |
+
# return {"error": str(e)}
|
139 |
+
|
140 |
+
# if __name__ == "__app__":
|
141 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
142 |
|
|
|
|
|
|
|
143 |
|
144 |
|
|
|
|
|
145 |
|
146 |
|
147 |
|
148 |
+
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
149 |
|
150 |
|
151 |
from fastapi import FastAPI, UploadFile, File
|
|
|
157 |
|
158 |
app = FastAPI()
|
159 |
|
160 |
+
# # Load model and processor
|
161 |
+
# processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
|
162 |
+
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
|
163 |
+
# model.config.forced_decoder_ids = None
|
164 |
+
|
165 |
+
import whisper
|
166 |
+
model = whisper.load_model("small")
|
167 |
+
|
168 |
|
169 |
@app.get("/")
|
170 |
def read_root():
|
|
|
189 |
audio_data = await audio_file.read()
|
190 |
|
191 |
# Process the audio data using the Whisper processor
|
192 |
+
# audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
193 |
+
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
194 |
|
195 |
+
# # Generate transcription
|
196 |
+
# predicted_ids = model.generate(input_features)
|
197 |
+
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
198 |
+
result = model.transcribe("/home/pranjal/Downloads/rt.mp3")
|
199 |
|
200 |
+
return {"transcription": result['text']}
|
201 |
except Exception as e:
|
202 |
return {"error": str(e)}
|
203 |
|