#uvicorn app:app --host 0.0.0.0 --port 8000 --reload # from fastapi import FastAPI # from transformers import WhisperProcessor, WhisperForConditionalGeneration # import librosa # import uvicorn # app = FastAPI() # processor = WhisperProcessor.from_pretrained("openai/whisper-small") # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") # model.config.forced_decoder_ids = None # audio_file_path = "output.mp3" # audio_data, _ = librosa.load(audio_file_path, sr=16000) # @app.get("/") # def transcribe_audio(): # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features # predicted_ids = model.generate(input_features) # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) # return {"transcription": transcription[0]} # if __name__ == "__main__": # import uvicorn # uvicorn.run(app, host="0.0.0.0", port=8000) # if __name__=='__main__': # uvicorn.run('main:app', reload=True) #uvicorn app:app --host 0.0.0.0 --port 8000 --reload #curl -X GET "http://localhost:8000/?text=I%20like%20Apples" #http://localhost:8000/?text=I%20like%20Apples # from fastapi import FastAPI # from transformers import WhisperProcessor, WhisperForConditionalGeneration # import librosa # import uvicorn # app = FastAPI() # # Load model and processor # processor = WhisperProcessor.from_pretrained("openai/whisper-small") # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") # model.config.forced_decoder_ids = None # # Path to your audio file # audio_file_path = "/home/pranjal/Downloads/output.mp3" # # Read the audio file # audio_data, _ = librosa.load(audio_file_path, sr=16000) # @app.get("/") # def transcribe_audio(): # # Process the audio data using the Whisper processor # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features # # Generate transcription # predicted_ids = model.generate(input_features) # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) # return {"transcription": transcription[0]} # if __name__ == "__main__": # import uvicorn # uvicorn.run(app, host="0.0.0.0", port=8000) # if __name__=='__app__': # uvicorn.run('main:app', reload=True) from fastapi import FastAPI, UploadFile, File from transformers import WhisperProcessor, WhisperForConditionalGeneration import librosa from fastapi.responses import HTMLResponse import uvicorn import io app = FastAPI() # Load model and processor processor = WhisperProcessor.from_pretrained("openai/whisper-small") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") model.config.forced_decoder_ids = None @app.get("/") def read_root(): html_form = """

ASR Transcription



""" return HTMLResponse(content=html_form, status_code=200) @app.post("/transcribe") async def transcribe_audio(audio_file: UploadFile): try: # Read the uploaded audio file audio_data = await audio_file.read() # Process the audio data using the Whisper processor audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000) input_features = processor(audio_data.tolist(), return_tensors="pt").input_features # Generate transcription predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return {"transcription": transcription[0]} except Exception as e: return {"error": str(e)} # if __name__ == "__app__": # uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)