#uvicorn app:app --host 0.0.0.0 --port 8000 --reload from fastapi import FastAPI, UploadFile, File from transformers import WhisperProcessor, WhisperForConditionalGeneration from fastapi.responses import HTMLResponse import librosa import io import re html_tag_remover = re.compile(r'<[^>]+>') def remove_tags(text): return html_tag_remover.sub('', text) app = FastAPI() processor = WhisperProcessor.from_pretrained("openai/whisper-medium") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium") model.config.forced_decoder_ids = None chunk_duration = 30 overlap_duration = 5 @app.get("/") def read_root(): html_form = """

ASR Transcription



""" return HTMLResponse(content=html_form, status_code=200) @app.post("/transcribe") async def transcribe_audio(audio_file: UploadFile): audio_data = await audio_file.read() audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000) transcription = [] start = 0 while start < len(audio_data): end = start + chunk_duration * 16000 audio_chunk = audio_data[start:end] input_features = processor(audio_chunk.tolist(), return_tensors="pt").input_features predicted_ids = model.generate(input_features, max_length=1000) chunk_transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) transcription.extend(chunk_transcription) start = end - overlap_duration * 16000 final_transcription = " ".join(transcription) final_transcription = remove_tags(final_transcription) return final_transcription