TSA / train.py
QINGCHE's picture
fix bugs
8ba144e
# %%
import numpy as np
import pandas as pd
import csv
import torch.nn as nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import TensorDataset, DataLoader
from transformers import BertTokenizer,BertConfig,AdamW
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from tqdm import tqdm
import torch
import transformers
from torch.utils.data import Dataset, DataLoader
# %%
class MyDataSet(Dataset):
def __init__(self, loaded_data):
self.data = loaded_data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
Data_path = "/kaggle/input/inference/train.csv"
Totle_data = pd.read_csv(Data_path)
Totle_data = Totle_data.sample(frac=0.1)
Totle_data = Totle_data.dropna(axis=0,subset = ["2"])
custom_dataset = MyDataSet(Totle_data)
#按照比例划分
train_size = int(len(custom_dataset) * 0.6)
validate_size = int(len(custom_dataset) * 0.1)
test_size = len(custom_dataset) - validate_size - train_size
train_dataset, validate_dataset, test_dataset = torch.utils.data.random_split(custom_dataset, [train_size, validate_size, test_size])
#设置保存路径
train_data_path="Bert_Try.csv"
dev_data_path = "Bert_Dev.csv"
test_data_path="Bert_Test.csv"
train_dataset = Totle_data.iloc[train_dataset.indices]
validate_dataset = Totle_data.iloc[validate_dataset.indices]
test_dataset = Totle_data.iloc[test_dataset.indices]
#index参数设置为False表示不保存行索引,header设置为False表示不保存列索引
train_dataset.to_csv(train_data_path,index=False,header=True)
validate_dataset.to_csv(dev_data_path ,index=False,header=True)
test_dataset.to_csv(test_data_path,index=False,header=True)
# %%
data = pd.read_csv(train_data_path)
data.head
# %%
class BertClassificationModel(nn.Module):
def __init__(self):
super(BertClassificationModel, self).__init__()
#加载预训练模型
pretrained_weights="bert-base-chinese"
self.bert = transformers.BertModel.from_pretrained(pretrained_weights)
for param in self.bert.parameters():
param.requires_grad = True
#定义线性函数
self.dense = nn.Linear(768, 3)
def forward(self, input_ids,token_type_ids,attention_mask):
#得到bert_output
bert_output = self.bert(input_ids=input_ids,token_type_ids=token_type_ids, attention_mask=attention_mask)
#获得预训练模型的输出
bert_cls_hidden_state = bert_output[1]
#将768维的向量输入到线性层映射为二维向量
linear_output = self.dense(bert_cls_hidden_state)
return linear_output
# %%
def encoder(max_len,vocab_path,text_list):
#将text_list embedding成bert模型可用的输入形式
#加载分词模型
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
tokenizer = tokenizer(
text_list,
padding = True,
truncation = True,
max_length = max_len,
return_tensors='pt' # 返回的类型为pytorch tensor
)
input_ids = tokenizer['input_ids']
token_type_ids = tokenizer['token_type_ids']
attention_mask = tokenizer['attention_mask']
return input_ids,token_type_ids,attention_mask
# %%
labels2dict = {"neutral":0,"entailment":1,"contradiction":2}
def load_data(path):
csvFileObj = open(path)
readerObj = csv.reader(csvFileObj)
text_list = []
labels = []
for row in readerObj:
#跳过表头
if readerObj.line_num == 1:
continue
#label在什么位置就改成对应的index
label = int(labels2dict[row[0]])
text = row[1]
text_list.append(text)
labels.append(label)
#调用encoder函数,获得预训练模型的三种输入形式
input_ids,token_type_ids,attention_mask = encoder(max_len=150,vocab_path="/root/Bert/bert-base-chinese/vocab.txt",text_list=text_list)
labels = torch.tensor(labels)
#将encoder的返回值以及label封装为Tensor的形式
data = TensorDataset(input_ids,token_type_ids,attention_mask,labels)
return data
# %%
#设定batch_size
batch_size = 16
#引入数据路径
train_data_path="Bert_Try.csv"
dev_data_path="Bert_Dev.csv"
test_data_path="Bert_Test.csv"
#调用load_data函数,将数据加载为Tensor形式
train_data = load_data(train_data_path)
dev_data = load_data(dev_data_path)
test_data = load_data(test_data_path)
#将训练数据和测试数据进行DataLoader实例化
train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dataset=dev_data, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False)
# %%
def dev(model,dev_loader):
model.to(device)
model.eval()
with torch.no_grad():
correct = 0
total = 0
for step, (input_ids,token_type_ids,attention_mask,labels) in tqdm(enumerate(dev_loader),desc='Dev Itreation:'):
input_ids,token_type_ids,attention_mask,labels=input_ids.to(device),token_type_ids.to(device),attention_mask.to(device),labels.to(device)
out_put = model(input_ids,token_type_ids,attention_mask)
_, predict = torch.max(out_put.data, 1)
correct += (predict==labels).sum().item()
total += labels.size(0)
res = correct / total
return res
# %%
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def train(model,train_loader,dev_loader) :
model.to(device)
model.train()
criterion = nn.CrossEntropyLoss()
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer_params = {'lr': 1e-5, 'eps': 1e-6, 'correct_bias': False}
optimizer = AdamW(optimizer_grouped_parameters, **optimizer_params)
scheduler = ReduceLROnPlateau(optimizer,mode='max',factor=0.5,min_lr=1e-7, patience=5,verbose= True, threshold=0.0001, eps=1e-08)
t_total = len(train_loader)
total_epochs = 10
bestAcc = 0
correct = 0
total = 0
print('Training and verification begin!')
for epoch in range(total_epochs):
for step, (input_ids,token_type_ids,attention_mask,labels) in enumerate(train_loader):
optimizer.zero_grad()
input_ids,token_type_ids,attention_mask,labels=input_ids.to(device),token_type_ids.to(device),attention_mask.to(device),labels.to(device)
out_put = model(input_ids,token_type_ids,attention_mask)
loss = criterion(out_put, labels)
_, predict = torch.max(out_put.data, 1)
correct += (predict == labels).sum().item()
total += labels.size(0)
loss.backward()
optimizer.step()
#每两步进行一次打印
if (step + 1) % 10 == 0:
train_acc = correct / total
print("Train Epoch[{}/{}],step[{}/{}],tra_acc{:.6f} %,loss:{:.6f}".format(epoch + 1, total_epochs, step + 1, len(train_loader),train_acc*100,loss.item()))
#每五十次进行一次验证
if (step + 1) % 200 == 0:
train_acc = correct / total
#调用验证函数dev对模型进行验证,并将有效果提升的模型进行保存
acc = dev(model, dev_loader)
if bestAcc < acc:
bestAcc = acc
#模型保存路径
path = 'bert_model.pkl'
torch.save(model, path)
print("DEV Epoch[{}/{}],step[{}/{}],tra_acc{:.6f} %,bestAcc{:.6f}%,dev_acc{:.6f} %,loss:{:.6f}".format(epoch + 1, total_epochs, step + 1, len(train_loader),train_acc*100,bestAcc*100,acc*100,loss.item()))
scheduler.step(bestAcc)
# %%
path = '/kaggle/input/inference/bert_model.pkl'
# model = torch.load(path)
#实例化模型
model = BertClassificationModel()
#调用训练函数进行训练与验证
train(model,train_loader,dev_loader)