|
from locale import strcoll |
|
from datasets import load_dataset |
|
import numpy as np |
|
import torch |
|
from torch import optim |
|
from torch.nn import functional as F |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
from transformers.optimization import Adafactor |
|
from transformers import get_linear_schedule_with_warmup |
|
from tqdm.notebook import tqdm |
|
import random |
|
import sacrebleu |
|
import os |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
import torch.multiprocessing as mp |
|
from torch.multiprocessing import Process, Queue |
|
from joblib import Parallel, delayed,parallel_backend |
|
import sys |
|
from functools import partial |
|
import json |
|
import time |
|
import numpy as np |
|
from datetime import datetime |
|
|
|
|
|
class Config(): |
|
def __init__(self,args) -> None: |
|
|
|
self.homepath = args.homepath |
|
self.prediction_path = os.path.join(args.homepath,args.prediction_path) |
|
|
|
self.model_repo = 'google/mt5-base' |
|
self.model_path_dir = args.homepath |
|
self.model_name = f'{args.model_name}.pt' |
|
self.bt_data_dir = os.path.join(args.homepath,args.bt_data_dir) |
|
|
|
|
|
self.parallel_dir= os.path.join(args.homepath,args.parallel_dir) |
|
self.mono_dir= os.path.join(args.homepath,args.mono_dir) |
|
|
|
self.log = os.path.join(args.homepath,args.log) |
|
self.mono_data_limit = args.mono_data_limit |
|
self.mono_data_for_noise_limit=args.mono_data_for_noise_limit |
|
|
|
self.n_epochs = args.n_epochs |
|
self.n_bt_epochs=args.n_bt_epochs |
|
|
|
self.batch_size = args.batch_size |
|
self.max_seq_len = args.max_seq_len |
|
self.min_seq_len = args.min_seq_len |
|
self.checkpoint_freq = args.checkpoint_freq |
|
self.lr = 1e-4 |
|
self.print_freq = args.print_freq |
|
self.use_multiprocessing = args.use_multiprocessing |
|
|
|
self.num_cores = mp.cpu_count() |
|
self.NUM_PRETRAIN = args.num_pretrain_steps |
|
self.NUM_BACKTRANSLATION_TIMES =args.num_backtranslation_steps |
|
self.do_backtranslation=args.do_backtranslation |
|
self.now_on_bt=False |
|
self.bt_time=0 |
|
self.using_reconstruction= args.use_reconstruction |
|
self.num_return_sequences_bt=2 |
|
self.use_torch_data_parallel = args.use_torch_data_parallel |
|
|
|
self.gradient_accumulation_batch = args.gradient_accumulation_batch |
|
self.num_beams = args.num_beams |
|
|
|
self.best_loss = 1000 |
|
self.best_loss_delta = 0.00000001 |
|
self.patience=args.patience |
|
self.L2=0.0000001 |
|
self.dropout=args.dropout |
|
|
|
self.drop_prob=args.drop_probability |
|
self.num_swaps=args.num_swaps |
|
|
|
self.verbose=args.verbose |
|
|
|
self.now_on_test=False |
|
|
|
|
|
self.state_dict = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss} |
|
self.state_dict_check = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss} |
|
|
|
|
|
|
|
self.device = torch.device('cuda' if True and torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.LANG_TOKEN_MAPPING = { |
|
'ig': '<ig>', |
|
'fon': '<fon>', |
|
'en': '<en>', |
|
'fr': '<fr>', |
|
'rw':'<rw>', |
|
'yo':'<yo>', |
|
'xh':'<xh>', |
|
'sw':'<sw>' |
|
} |
|
|
|
|
|
self.truncation=True |
|
|
|
|
|
|
|
|
|
def beautify_time(time): |
|
hr = time//(3600) |
|
mins = (time-(hr*3600))//60 |
|
rest = time -(hr*3600) - (mins*60) |
|
|
|
sp = "" |
|
if hr >=1: |
|
sp += '{} hours'.format(hr) |
|
if mins >=1: |
|
sp += ' {} mins'.format(mins) |
|
if rest >=1: |
|
sp += ' {} seconds'.format(rest) |
|
return sp |
|
|
|
|
|
|
|
def word_delete(x,config): |
|
noise=[] |
|
words = x.split(' ') |
|
if len(words) == 1: |
|
return x |
|
for w in words: |
|
a= np.random.choice([0,1], 1, p=[config.drop_prob, 1-config.drop_prob]) |
|
if a[0]==1: |
|
noise.append(w) |
|
|
|
if len(noise) == 0: |
|
rand_int = random.randint(0, len(words)-1) |
|
return [words[rand_int]] |
|
|
|
return ' '.join(noise) |
|
|
|
def swap_word(new_words): |
|
|
|
random_idx_1 = random.randint(0, len(new_words)-1) |
|
random_idx_2 = random_idx_1 |
|
counter = 0 |
|
|
|
while random_idx_2 == random_idx_1: |
|
random_idx_2 = random.randint(0, len(new_words)-1) |
|
counter += 1 |
|
|
|
if counter > 3: |
|
return new_words |
|
|
|
new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1] |
|
return new_words |
|
|
|
def random_swap(words, n): |
|
|
|
words = words.split() |
|
new_words = words.copy() |
|
|
|
for _ in range(n): |
|
new_words = swap_word(new_words) |
|
|
|
sentence = ' '.join(new_words) |
|
|
|
return sentence |
|
|
|
|
|
|
|
def get_dict(input,target,src,tgt): |
|
inp = [i for i in input] |
|
target_ = [ i for i in target] |
|
s= [src for i in range(len(inp))] |
|
t = [tgt for i in range(len(target_))] |
|
return [{'inputs':inp_,'targets':target__,'src':s_,'tgt':t_} for inp_,target__,s_,t_ in zip(inp,target_,s,t)] |
|
|
|
def get_dict_mono(input,src,config): |
|
index = [i for i in range(len(input))] |
|
ids = random.sample(index,config.mono_data_limit) |
|
inp = [input[i] for i in ids] |
|
s= [src for i in range(len(inp))] |
|
data=[] |
|
for lang in config.LANG_TOKEN_MAPPING.keys(): |
|
if lang!=src and lang not in ['en','fr']: |
|
data.extend([{'inputs':inp_,'src':s_,'tgt':lang} for inp_,s_ in zip(inp,s)]) |
|
return data |
|
|
|
def get_dict_mono_noise(input,src,config): |
|
index = [i for i in range(len(input))] |
|
ids = random.sample(index,config.mono_data_for_noise_limit) |
|
inp = [input[i] for i in ids] |
|
noised = [word_delete(random_swap(str(x),config.num_swaps),config) for x in inp] |
|
s= [src for i in range(len(inp))] |
|
data=[] |
|
data.extend([{'inputs':noise_,'targets':inp_,'src':s_,'tgt':s_} for inp_,s_,noise_ in zip(inp,s,noised)]) |
|
return data |
|
|
|
|
|
def compress(input,target,src,tgt): |
|
return {'inputs':input,'targets':target,'src':src,'tgt':tgt} |
|
|
|
|
|
def make_dataset(config,mode): |
|
if mode!='eval' and mode!='train' and mode!='test': |
|
raise Exception('mode is either train or eval or test!') |
|
else: |
|
|
|
files = [f.name for f in os.scandir(config.parallel_dir) ] |
|
files = [f for f in files if f.split('.')[-1]=='tsv' and f.split('.tsv')[0].endswith(mode) and len(f.split('_'))>2 ] |
|
data = [(f_.split('_')[0],f_.split('_')[1],pd.read_csv(os.path.join(config.parallel_dir,f_), sep="\t")) for f_ in files] |
|
dict_ = [get_dict(df['input'],df['target'],src,tgt) for src,tgt,df in data] |
|
return [item for sublist in dict_ for item in sublist] |
|
|
|
|
|
|
|
def get_model_translation(config,model,tokenizer,sentence,tgt): |
|
if config.use_torch_data_parallel: |
|
max_seq_len_ = model.module.config.max_length |
|
else: |
|
max_seq_len_ = model.config.max_length |
|
input_ids = encode_input_str(config,text = sentence,target_lang = tgt,tokenizer = tokenizer,seq_len = max_seq_len_).unsqueeze(0).to(config.device) |
|
if config.use_torch_data_parallel: |
|
out = model.module.generate(input_ids,num_beams=3,do_sample=True, num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len) |
|
else: |
|
out = model.generate(input_ids,num_beams=3, do_sample=True,num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len) |
|
|
|
out_id = [i for i in range(config.num_return_sequences_bt)] |
|
id_ = random.sample(out_id,1) |
|
|
|
return tokenizer.decode(out[id_][0], skip_special_tokens=True) |
|
|
|
|
|
def do_job(t,id_,tokenizers): |
|
tokenizer = tokenizers[id_ % len(tokenizers)] |
|
|
|
return {'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']} |
|
|
|
|
|
|
|
def do_job_pmap(t): |
|
|
|
return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} |
|
|
|
def do_job_pool(bt_data,model,id_,tokenizers,config,mono_data): |
|
tokenizer = tokenizers[id_] |
|
if config.verbose: |
|
print(f"Mono data inside job pool: {mono_data}") |
|
sys.stdout.flush() |
|
res = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in mono_data] |
|
bt_data.put(res) |
|
return None |
|
|
|
def mono_data_(config): |
|
|
|
files_ = [f.name for f in os.scandir(config.mono_dir) ] |
|
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')] |
|
if config.verbose: |
|
print("Generating data for back translation") |
|
print(f"Files found in mono dir: {files}") |
|
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files] |
|
dict_ = [get_dict_mono(df['input'],src,config) for src,df in data] |
|
mono_data = [item for sublist in dict_ for item in sublist] |
|
return mono_data |
|
|
|
def mono_data_noise(config): |
|
|
|
files_ = [f.name for f in os.scandir(config.mono_dir) ] |
|
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')] |
|
if config.verbose: |
|
print("Generating data for back translation") |
|
print(f"Files found in mono dir: {files}") |
|
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files] |
|
dict_ = [get_dict_mono_noise(df['input'],src,config) for src,df in data] |
|
mono_data = [item for sublist in dict_ for item in sublist] |
|
return mono_data |
|
|
|
|
|
|
|
def get_mono_data(config,model): |
|
mono_data = mono_data_(config) |
|
|
|
if config.use_multiprocessing: |
|
if config.verbose: |
|
print(f"Using multiprocessing on {config.num_cores} processes") |
|
if __name__ == "__main__": |
|
ctx = mp.get_context('spawn') |
|
|
|
bt_data = ctx.Queue() |
|
model.share_memory() |
|
num_processes = config.num_cores |
|
NUM_TO_USE = len(mono_data)//num_processes |
|
mini_mono_data = [mono_data[i:i + NUM_TO_USE] for i in range(0, len(mono_data), NUM_TO_USE)] |
|
|
|
assert len(mini_mono_data) == num_processes, "Length of mini mono data and number of processes do not match." |
|
|
|
num_processes_range = [i for i in range(num_processes)] |
|
processes = [] |
|
for rank,data_ in tqdm(zip(num_processes_range,mini_mono_data)): |
|
p = ctx.Process(target=do_job_pool, args=(bt_data,model,rank,tokenizers_for_parallel,config,data_)) |
|
p.start() |
|
if config.verbose: |
|
print(f"Bt data: {bt_data.get()}") |
|
sys.stdout.flush() |
|
processes.append(p) |
|
|
|
for p in processes: |
|
p.join() |
|
|
|
return bt_data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
# Setup a list of processes that we want to run |
|
processes = [mp.Process(target=do_job, args=(5, output)) for x in range(config.num_cores)] |
|
if __name__ == "__main__": |
|
#pool = mp.Pool(processes=config.num_cores) |
|
with parallel_backend('loky'): |
|
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in enumerate(mono_data)) |
|
''' |
|
else: |
|
bt_data = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in tqdm(mono_data)] |
|
return bt_data |
|
|
|
|
|
|
|
def encode_input_str(config,text, target_lang, tokenizer, seq_len): |
|
|
|
target_lang_token = config.LANG_TOKEN_MAPPING[target_lang] |
|
|
|
|
|
input_ids = tokenizer.encode( |
|
text = str(target_lang_token) + str(text), |
|
return_tensors = 'pt', |
|
padding = 'max_length', |
|
truncation = config.truncation, |
|
max_length = seq_len) |
|
|
|
return input_ids[0] |
|
|
|
def encode_target_str(config,text, tokenizer, seq_len): |
|
token_ids = tokenizer.encode( |
|
text = str(text), |
|
return_tensors = 'pt', |
|
padding = 'max_length', |
|
truncation = config.truncation, |
|
max_length = seq_len) |
|
|
|
return token_ids[0] |
|
|
|
def format_translation_data(config,sample,tokenizer,seq_len): |
|
|
|
|
|
|
|
|
|
|
|
input_lang = sample['src'] |
|
target_lang = sample['tgt'] |
|
|
|
|
|
input_text = sample['inputs'] |
|
target_text = sample['targets'] |
|
|
|
if input_text is None or target_text is None: |
|
return None |
|
|
|
input_token_ids = encode_input_str(config,input_text, target_lang, tokenizer, seq_len) |
|
|
|
target_token_ids = encode_target_str(config,target_text, tokenizer, seq_len) |
|
|
|
return input_token_ids, target_token_ids |
|
|
|
def transform_batch(config,batch,tokenizer,max_seq_len): |
|
inputs = [] |
|
targets = [] |
|
for sample in batch: |
|
formatted_data = format_translation_data(config,sample,tokenizer,max_seq_len) |
|
|
|
if formatted_data is None: |
|
continue |
|
|
|
input_ids, target_ids = formatted_data |
|
inputs.append(input_ids.unsqueeze(0)) |
|
targets.append(target_ids.unsqueeze(0)) |
|
|
|
batch_input_ids = torch.cat(inputs) |
|
batch_target_ids = torch.cat(targets) |
|
|
|
return batch_input_ids, batch_target_ids |
|
|
|
def get_data_generator(config,dataset,tokenizer,max_seq_len,batch_size): |
|
random.shuffle(dataset) |
|
|
|
for i in range(0, len(dataset), batch_size): |
|
raw_batch = dataset[i:i+batch_size] |
|
yield transform_batch(config,raw_batch, tokenizer,max_seq_len) |
|
|
|
def eval_model(config,tokenizer,model, gdataset, max_iters=8): |
|
test_generator = get_data_generator(config,gdataset,tokenizer,config.max_seq_len, config.batch_size) |
|
eval_losses = [] |
|
for i, (input_batch, label_batch) in enumerate(test_generator): |
|
|
|
input_batch, label_batch = input_batch.to(config.device), label_batch.to(config.device) |
|
model_out = model.forward( |
|
input_ids = input_batch, |
|
labels = label_batch) |
|
|
|
if config.use_torch_data_parallel: |
|
loss = torch.mean(model_out.loss) |
|
else: |
|
loss = model_out.loss |
|
|
|
eval_losses.append(loss.item()) |
|
|
|
return np.mean(eval_losses) |
|
|
|
|
|
|
|
def evaluate(config,tokenizer,model,test_dataset,src_lang=None,tgt_lang=None): |
|
if src_lang!=None and tgt_lang!=None: |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print(f"Getting evaluation set for source language -> {src_lang} and target language -> {tgt_lang}",file=fl) |
|
data = [t for t in test_dataset if t['src']==src_lang and t['tgt']==tgt_lang] |
|
|
|
else: |
|
data= [t for t in test_dataset] |
|
|
|
inp = [t['inputs'] for t in data] |
|
truth = [t['targets'] for t in data] |
|
tgt_lang_ = [t['tgt'] for t in data] |
|
|
|
seq_len__ = config.max_seq_len |
|
|
|
input_tokens = [encode_input_str(config,text = inp[i],target_lang = tgt_lang_[i],tokenizer = tokenizer,seq_len =seq_len__).unsqueeze(0).to(config.device) for i in range(len(inp))] |
|
|
|
if config.use_torch_data_parallel: |
|
output = [model.module.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)] |
|
else: |
|
output = [model.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)] |
|
output = [tokenizer.decode(out[0], skip_special_tokens=True) for out in tqdm(output)] |
|
|
|
df= pd.DataFrame({'predictions':output,'truth':truth,'inputs':inp}) |
|
if config.now_on_bt and config.using_reconstruction: |
|
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}_rec.tsv' |
|
elif config.now_on_bt: |
|
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}.tsv' |
|
elif config.now_on_test: |
|
filename = f'{src_lang}_{tgt_lang}_TEST.tsv' |
|
else: |
|
filename = f'{src_lang}_{tgt_lang}.tsv' |
|
df.to_csv(os.path.join(config.prediction_path,filename),sep='\t',index=False) |
|
try: |
|
spbleu = sacrebleu.corpus_bleu(output, [truth]) |
|
except Exception: |
|
raise Exception(f'There is a problem with {src_lang}_{tgt_lang}. Truth is {truth} \n Input is {inp} ') |
|
|
|
|
|
|
|
return spbleu.score |
|
|
|
|
|
def do_evaluation(config,tokenizer,model,test_dataset): |
|
LANGS = list(config.LANG_TOKEN_MAPPING.keys()) |
|
if config.now_on_bt and config.using_reconstruction: |
|
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time} with RECONSTRUCTION---------------------------'+'\n' |
|
elif config.now_on_bt: |
|
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time}---------------------------'+'\n' |
|
elif config.now_on_test: |
|
s=f'---------------------------TESTING EVALUATION---------------------------'+'\n' |
|
else: |
|
s=f'---------------------------EVALUATION ON DEV---------------------------'+'\n' |
|
for i in range(len(LANGS)): |
|
for j in range(len(LANGS)): |
|
if LANGS[j]!=LANGS[i]: |
|
eval_bleu = evaluate(config,tokenizer,model,test_dataset,src_lang=LANGS[i],tgt_lang=LANGS[j]) |
|
a = f'Bleu Score for {LANGS[i]} to {LANGS[j]} -> {eval_bleu} '+'\n' |
|
s+=a |
|
|
|
|
|
s+='------------------------------------------------------' |
|
with open(os.path.join(config.homepath,'bleu_log.txt'), 'a+') as fl: |
|
print(s,file=fl) |
|
|
|
|
|
def train(config,n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model,save_with_bt=False): |
|
patience=0 |
|
losses = [] |
|
for epoch_idx in range(n_epochs): |
|
if epoch_idx>=config.state_dict_check['epoch']+1: |
|
st_time = time.time() |
|
avg_loss=0 |
|
|
|
data_generator = get_data_generator(config,train_dataset,tokenizer,config.max_seq_len, config.batch_size) |
|
optimizer.zero_grad() |
|
for batch_idx, (input_batch, label_batch) in tqdm(enumerate(data_generator), total=n_batches): |
|
if batch_idx >= config.state_dict_check['batch_idx']: |
|
|
|
input_batch,label_batch = input_batch.to(config.device),label_batch.to(config.device) |
|
|
|
model_out = model.forward(input_ids = input_batch, labels = label_batch) |
|
|
|
|
|
if config.use_torch_data_parallel: |
|
loss = torch.mean(model_out.loss) |
|
else: |
|
loss = model_out.loss |
|
|
|
losses.append(loss.item()) |
|
loss.backward() |
|
|
|
|
|
if (batch_idx+1) % config.gradient_accumulation_batch == 0: |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
if (batch_idx + 1) % config.print_freq == 0: |
|
avg_loss = np.mean(losses) |
|
losses=[] |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print('Epoch: {} | Step: {} | Avg. loss: {:.3f}'.format(epoch_idx+1, batch_idx+1, avg_loss),file=fl) |
|
|
|
if (batch_idx + 1) % config.checkpoint_freq == 0: |
|
test_loss = eval_model(config,tokenizer,model, dev_dataset) |
|
if config.best_loss-test_loss > config.best_loss_delta: |
|
config.best_loss = test_loss |
|
patience=0 |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl) |
|
|
|
if save_with_bt: |
|
model_name = config.model_name.split('.')[0]+'_bt.pt' |
|
else: |
|
model_name = config.model_name |
|
|
|
config.state_dict.update({'batch_idx': batch_idx,'epoch':epoch_idx,'bt_time':config.bt_time-1,'best_loss':config.best_loss}) |
|
if config.use_torch_data_parallel: |
|
config.state_dict['model_state_dict']=model.module.state_dict() |
|
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name)) |
|
else: |
|
config.state_dict['model_state_dict']=model.state_dict() |
|
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name)) |
|
else: |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl) |
|
patience+=1 |
|
if patience >= config.patience: |
|
with open(config.log,'a+') as fl: |
|
print("Stopping model training due to early stopping",file=fl) |
|
break |
|
with open(config.log,'a+') as fl: |
|
print('Epoch: {} | Step: {} | Avg. loss: {:.3f} | Time taken: {} | Time: {}'.format(epoch_idx+1, batch_idx+1, avg_loss, beautify_time(time.time()-st_time),datetime.now()),file=fl) |
|
|
|
|
|
test_loss = eval_model(config,tokenizer,model, dev_dataset) |
|
if config.best_loss-test_loss > config.best_loss_delta: |
|
config.best_loss = test_loss |
|
patience=0 |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl) |
|
|
|
if save_with_bt: |
|
model_name = config.model_name.split('.')[0]+'_bt.pt' |
|
else: |
|
model_name = config.model_name |
|
|
|
config.state_dict.update({'batch_idx': n_batches-1,'epoch':n_epochs-1,'bt_time':config.bt_time-1,'best_loss':config.best_loss}) |
|
if config.use_torch_data_parallel: |
|
config.state_dict['model_state_dict']=model.module.state_dict() |
|
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name)) |
|
else: |
|
config.state_dict['model_state_dict']=model.state_dict() |
|
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name)) |
|
else: |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl) |
|
patience+=1 |
|
|
|
|
|
|
|
|
|
def main(args): |
|
if not os.path.exists(args.homepath): |
|
raise Exception(f'HOMEPATH {args.homepath} does not exist!') |
|
config = Config(args) |
|
if not os.path.exists(config.prediction_path): |
|
os.makedirs(config.prediction_path) |
|
if not os.path.exists(config.bt_data_dir): |
|
os.makedirs(config.bt_data_dir) |
|
"""# Load Tokenizer & Model""" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(config.model_repo) |
|
if config.use_multiprocessing: |
|
tokenizers_for_parallel = [AutoTokenizer.from_pretrained(config.model_repo) for i in range(config.num_cores)] |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(config.model_repo) |
|
|
|
if not os.path.exists(config.parallel_dir): |
|
raise Exception(f'Directory `{config.parallel_dir}` cannot be empty! It must contain the parallel files') |
|
|
|
train_dataset = make_dataset(config,'train') |
|
with open(config.log,'a+') as fl: |
|
print(f"Length of train dataset: {len(train_dataset)}",file=fl) |
|
|
|
dev_dataset = make_dataset(config,'eval') |
|
with open(config.log,'a+') as fl: |
|
print(f"Length of dev dataset: {len(dev_dataset)}",file=fl) |
|
|
|
"""## Update tokenizer""" |
|
special_tokens_dict = {'additional_special_tokens': list(config.LANG_TOKEN_MAPPING.values())} |
|
tokenizer.add_special_tokens(special_tokens_dict) |
|
if config.use_multiprocessing: |
|
for tk in tokenizers_for_parallel: |
|
tk.add_special_tokens(special_tokens_dict) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
"""# Train/Finetune MT5""" |
|
if os.path.exists(os.path.join(config.model_path_dir,config.model_name)): |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print("-----------Using model checkpoint-----------",file=fl) |
|
|
|
try: |
|
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name.split('.')[0]+'_bt.pt')) |
|
except Exception: |
|
with open(config.log,'a+') as fl: |
|
print('No mmt_translation_bt.pt present. Default to original mmt_translation.pt',file=fl) |
|
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name)) |
|
|
|
|
|
|
|
config.state_dict_check['epoch']=state_dict['epoch'] |
|
config.state_dict_check['bt_time']=state_dict['bt_time'] |
|
config.state_dict_check['best_loss']=state_dict['best_loss'] |
|
config.best_loss = config.state_dict_check['best_loss'] |
|
config.state_dict_check['batch_idx']=state_dict['batch_idx'] |
|
model.load_state_dict(state_dict['model_state_dict']) |
|
|
|
|
|
config.state_dict_check['epoch']=-1 |
|
config.state_dict_check['batch_idx']=0 |
|
config.state_dict_check['bt_time']=-1 |
|
|
|
|
|
|
|
if config.use_torch_data_parallel: |
|
model = torch.nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) |
|
model = model.to(config.device) |
|
|
|
|
|
|
|
optimizer = Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=config.lr) |
|
|
|
|
|
n_batches = int(np.ceil(len(train_dataset) / config.batch_size)) |
|
total_steps = config.n_epochs * n_batches |
|
n_warmup_steps = int(total_steps * 0.01) |
|
|
|
|
|
|
|
|
|
train(config,config.n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model) |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print('Evaluaton...',file=fl) |
|
do_evaluation(config,tokenizer,model,dev_dataset) |
|
config.state_dict_check['epoch']=-1 |
|
config.state_dict_check['batch_idx']=0 |
|
|
|
if config.do_backtranslation: |
|
|
|
config.now_on_bt=True |
|
with open(config.log,'a+') as fl: |
|
print('---------------Start of Backtranslation---------------',file=fl) |
|
for n_bt in range(config.NUM_BACKTRANSLATION_TIMES): |
|
if n_bt>=config.state_dict_check['bt_time']+1: |
|
with open(config.log,'a+') as fl: |
|
print(f"Backtranslation {n_bt+1} of {config.NUM_BACKTRANSLATION_TIMES}--------------",file=fl) |
|
config.bt_time = n_bt+1 |
|
save_bt_file_path = os.path.join(config.bt_data_dir,'bt'+str(n_bt+1)+'.json') |
|
if not os.path.exists(save_bt_file_path): |
|
mono_data = mono_data_(config) |
|
start_time = time.time() |
|
if config.use_multiprocessing: |
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print(f"Using multiprocessing on {config.num_cores} processes",file=fl) |
|
if __name__ == "__main__": |
|
model.share_memory() |
|
with parallel_backend('loky'): |
|
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in tqdm(enumerate(mono_data))) |
|
else: |
|
bt_data = [{'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']} for t in tqdm(mono_data)] |
|
with open(config.log,'a+') as fl: |
|
print(f'Time taken for backtranslation of data: {beautify_time(time.time()-start_time)}',file=fl) |
|
with open(save_bt_file_path,'w') as fp: |
|
json.dump(bt_data,fp) |
|
|
|
else: |
|
with open(save_bt_file_path,'r') as f: |
|
bt_data = json.load(f) |
|
with open(config.log,'a+') as fl: |
|
print('-'*15+'Printing 5 random BT Data'+'-'*15,file=fl) |
|
ids_print = random.sample([i for i in range(len(bt_data))],5) |
|
with open(config.log,'a+') as fl: |
|
for ids_print_ in ids_print: |
|
|
|
print(bt_data[ids_print_],file=fl) |
|
|
|
augmented_dataset = train_dataset + bt_data + mono_data_noise(config) |
|
random.shuffle(augmented_dataset) |
|
|
|
with open(config.log,'a+') as fl: |
|
print(f'New length of dataset: {len(augmented_dataset)}',file=fl) |
|
|
|
n_batches = int(np.ceil(len(augmented_dataset) / config.batch_size)) |
|
total_steps = config.n_bt_epochs * n_batches |
|
n_warmup_steps = int(total_steps * 0.01) |
|
|
|
|
|
|
|
|
|
train(config,config.n_bt_epochs,optimizer,tokenizer,augmented_dataset,dev_dataset,n_batches,model,save_with_bt=True) |
|
|
|
if config.verbose: |
|
with open(config.log,'a+') as fl: |
|
print('Evaluaton...',file=fl) |
|
do_evaluation(config,tokenizer,model,dev_dataset) |
|
|
|
config.state_dict_check['epoch']=-1 |
|
config.state_dict_check['batch_idx']=0 |
|
with open(config.log,'a+') as fl: |
|
print('---------------End of Backtranslation---------------',file=fl) |
|
|
|
with open(config.log,'a+') as fl: |
|
print('---------------End of Training---------------',file=fl) |
|
config.now_on_bt=False |
|
config.now_on_test=True |
|
with open(config.log,'a+') as fl: |
|
print('Evaluating on test set',file=fl) |
|
test_dataset = make_dataset(config,'test') |
|
with open(config.log,'a+') as fl: |
|
print(f"Length of test dataset: {len(test_dataset)}",file=fl) |
|
do_evaluation(config,tokenizer,model,test_dataset) |
|
|
|
with open(config.log,'a+') as fl: |
|
print("ALL DONE",file=fl) |
|
|
|
|
|
def load_params(args: dict) -> dict: |
|
""" |
|
Load the parameters passed to `translate` |
|
""" |
|
|
|
|
|
|
|
params = {} |
|
model_repo = 'google/mt5-base' |
|
LANG_TOKEN_MAPPING = { |
|
'ig': '<ig>', |
|
'fon': '<fon>', |
|
'en': '<en>', |
|
'fr': '<fr>', |
|
'rw':'<rw>', |
|
'yo':'<yo>', |
|
'xh':'<xh>', |
|
'sw':'<sw>' |
|
} |
|
tokenizer = AutoTokenizer.from_pretrained(model_repo) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_repo) |
|
|
|
|
|
"""## Update tokenizer""" |
|
special_tokens_dict = {'additional_special_tokens': list(LANG_TOKEN_MAPPING.values())} |
|
tokenizer.add_special_tokens(special_tokens_dict) |
|
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
state_dict = torch.load(args['checkpoint'],map_location=args['device']) |
|
|
|
model.load_state_dict(state_dict['model_state_dict']) |
|
|
|
model = model.to(args['device']) |
|
|
|
|
|
params['model'] = model |
|
params['device'] = args['device'] |
|
params['max_seq_len'] = args['max_seq_len'] if 'max_seq_len' in args else 50 |
|
params['min_seq_len'] = args['min_seq_len'] if 'min_seq_len' in args else 2 |
|
params['tokenizer'] = tokenizer |
|
params['num_beams'] = args['num_beams'] if 'num_beams' in args else 4 |
|
params['lang_token'] = LANG_TOKEN_MAPPING |
|
params['truncation'] = args['truncation'] if 'truncation' in args else True |
|
|
|
return params |
|
|
|
def encode_input_str_translate(params,text, target_lang, tokenizer, seq_len): |
|
|
|
target_lang_token = params['lang_token'][target_lang] |
|
|
|
|
|
input_ids = tokenizer.encode( |
|
text = str(target_lang_token) + str(text), |
|
return_tensors = 'pt', |
|
padding = 'max_length', |
|
truncation = params['truncation'] , |
|
max_length = seq_len) |
|
|
|
return input_ids[0] |
|
|
|
def translate( |
|
params: dict, |
|
sentence: str, |
|
source_lang: str, |
|
target_lang: str |
|
) -> str: |
|
""" |
|
Given a sentence and its source and target sentences, this translates the sentence |
|
to the given target sentence. |
|
""" |
|
|
|
|
|
if source_lang!='' and target_lang!='': |
|
inp = [sentence] |
|
|
|
input_tokens = [encode_input_str_translate(params,text = inp[i],target_lang = target_lang,tokenizer = params['tokenizer'],seq_len =params['max_seq_len']).unsqueeze(0).to(params['device']) for i in range(len(inp))] |
|
output = [params['model'].generate(input_ids, num_beams=params['num_beams'], num_return_sequences=1,max_length=params['max_seq_len'],min_length=params['min_seq_len']) for input_ids in input_tokens] |
|
output = [params['tokenizer'].decode(out[0], skip_special_tokens=True) for out in tqdm(output)] |
|
|
|
return output[0] |
|
|
|
else: |
|
return '' |
|
|
|
|
|
|
|
|
|
|
|
if __name__=="__main__": |
|
from argparse import ArgumentParser |
|
import json |
|
import os |
|
|
|
|
|
parser = ArgumentParser('MMTArica Experiments') |
|
|
|
parser.add_argument('-homepath', type=str, default=os.getcwd(), |
|
help="Homepath directory. Where all experiments are saved and all \ |
|
necessary files/folders are saved. (default: current working directory)") |
|
|
|
parser.add_argument('--prediction_path', type=str, default='./predictions', |
|
help='directory path to save predictions (default: %(default)s)') |
|
|
|
parser.add_argument('--model_name', type=str, default='mmt_translation', |
|
help='Name of model (default: %(default)s)') |
|
|
|
parser.add_argument('--bt_data_dir', type=str, default='btData', |
|
help='Directory to save back-translation files (default: %(default)s)') |
|
|
|
parser.add_argument('--parallel_dir', type=str, default='parallel', |
|
help='name of directory where parallel corpora is saved') |
|
|
|
parser.add_argument('--mono_dir', type=str, default='mono', |
|
help='name of directory where monolingual files are saved (default: %(default)s)') |
|
|
|
parser.add_argument('--log', type=str, default='train.log', |
|
help='name of file to log experiments (default: %(default)s)') |
|
|
|
parser.add_argument('--mono_data_limit', type=int, default=300, |
|
help='limit of monolingual sentences to use for training (default: %(default)s)') |
|
|
|
parser.add_argument('--mono_data_for_noise_limit', type=int, default=50, |
|
help='limit of monolingual sentences to use for noise (default: %(default)s)') |
|
|
|
parser.add_argument('--n_epochs', type=int, default=10, |
|
help='number of training epochs (default: %(default)s)') |
|
|
|
parser.add_argument('--n_bt_epochs', type=int, default=3, |
|
help='number of backtranslation epochs (default: %(default)s)') |
|
|
|
parser.add_argument('--batch_size', type=int, default=64, |
|
help='batch size (default: %(default)s)') |
|
|
|
parser.add_argument('--max_seq_len', type=int, default=50, |
|
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)') |
|
|
|
parser.add_argument('--min_seq_len', type=int, default=2, |
|
help='mnimum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)') |
|
|
|
parser.add_argument('--checkpoint_freq', type=int, default=10_000, |
|
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)') |
|
|
|
parser.add_argument('--lr', type=int, default=1e-4, |
|
help='learning rate. (default: %(default)s)') |
|
|
|
parser.add_argument('--print_freq', type=int, default=5_000, |
|
help='frequency at which to print to log. (default: %(default)s)') |
|
|
|
parser.add_argument('--use_multiprocessing', type=bool, default=False, |
|
help='whether or not to use multiprocessing. (default: %(default)s)') |
|
|
|
parser.add_argument('--num_pretrain_steps', type=int, default=20, |
|
help='number of pretrain steps. (default: %(default)s)') |
|
|
|
parser.add_argument('--num_backtranslation_steps', type=int, default=5, |
|
help='number of pretrain steps. (default: %(default)s)') |
|
|
|
parser.add_argument('--do_backtranslation', type=bool, default=True, |
|
help='whether or not to do backtranslation during training. (default: %(default)s)') |
|
|
|
parser.add_argument('--use_reconstruction', type=bool, default=True, |
|
help='whether or not to use reconstruction during training. (default: %(default)s)') |
|
|
|
parser.add_argument('--use_torch_data_parallel', type=bool, default=False, |
|
help='whether or not to use torch data parallelism. (default: %(default)s)') |
|
|
|
parser.add_argument('--gradient_accumulation_batch', type=int, default=4096//64, |
|
help='batch size for gradient accumulation. (default: %(default)s)') |
|
|
|
parser.add_argument('--num_beams', type=int, default=4, |
|
help='number of beams to use for inference. (default: %(default)s)') |
|
|
|
parser.add_argument('--patience', type=int, default=15_000_000, |
|
help='patience for early stopping. (default: %(default)s)') |
|
|
|
parser.add_argument('--drop_probability', type=float, default=0.2, |
|
help='drop probability for reconstruction. (default: %(default)s)') |
|
|
|
parser.add_argument('--dropout', type=float, default=0.1, |
|
help='dropout probability. (default: %(default)s)') |
|
|
|
parser.add_argument('--num_swaps', type=int, default=3, |
|
help='number of word swaps to perform during reconstruction. (default: %(default)s)') |
|
|
|
parser.add_argument('--verbose', type=bool, default=True, |
|
help='whether or not to print information during experiments. (default: %(default)s)') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
main(args) |
|
|
|
|
|
|
|
|