Spaces:
Running
Running
from typing import List, Union | |
import datasets | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from transformers import AutoFeatureExtractor, AutoModel | |
seed = 42 | |
hash_size = 8 | |
hidden_dim = 768 # ViT-base | |
np.random.seed(seed) | |
# Device. | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load model for computing embeddings.. | |
model_ckpt = "nateraw/vit-base-beans" | |
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt) | |
# Data transformation chain. | |
transformation_chain = T.Compose( | |
[ | |
# We first resize the input image to 256x256 and then we take center crop. | |
T.Resize(int((256 / 224) * extractor.size["height"])), | |
T.CenterCrop(extractor.size["height"]), | |
T.ToTensor(), | |
T.Normalize(mean=extractor.image_mean, std=extractor.image_std), | |
] | |
) | |
# Define random vectors to project with. | |
random_vectors = np.random.randn(hash_size, hidden_dim).T | |
def hash_func(embedding, random_vectors=random_vectors): | |
"""Randomly projects the embeddings and then computes bit-wise hashes.""" | |
if not isinstance(embedding, np.ndarray): | |
embedding = np.array(embedding) | |
if len(embedding.shape) < 2: | |
embedding = np.expand_dims(embedding, 0) | |
# Random projection. | |
bools = np.dot(embedding, random_vectors) > 0 | |
return [bool2int(bool_vec) for bool_vec in bools] | |
def bool2int(x): | |
y = 0 | |
for i, j in enumerate(x): | |
if j: | |
y += 1 << i | |
return y | |
def compute_hash(model: Union[torch.nn.Module, str]): | |
"""Computes hash on a given dataset.""" | |
device = model.device | |
def pp(example_batch): | |
# Prepare the input images for the model. | |
image_batch = example_batch["image"] | |
image_batch_transformed = torch.stack( | |
[transformation_chain(image) for image in image_batch] | |
) | |
new_batch = {"pixel_values": image_batch_transformed.to(device)} | |
# Compute embeddings and pool them i.e., take the representations from the [CLS] | |
# token. | |
with torch.no_grad(): | |
embeddings = model(**new_batch).last_hidden_state[:, 0].cpu().numpy() | |
# Compute hashes for the batch of images. | |
hashes = [hash_func(embeddings[i]) for i in range(len(embeddings))] | |
example_batch["hashes"] = hashes | |
return example_batch | |
return pp | |
class Table: | |
def __init__(self, hash_size: int): | |
self.table = {} | |
self.hash_size = hash_size | |
def add(self, id: int, hashes: List[int], label: int): | |
# Create a unique indentifier. | |
entry = {"id_label": str(id) + "_" + str(label)} | |
# Add the hash values to the current table. | |
for h in hashes: | |
if h in self.table: | |
self.table[h].append(entry) | |
else: | |
self.table[h] = [entry] | |
def query(self, hashes: List[int]): | |
results = [] | |
# Loop over the query hashes and determine if they exist in | |
# the current table. | |
for h in hashes: | |
if h in self.table: | |
results.extend(self.table[h]) | |
return results | |
class LSH: | |
def __init__(self, hash_size, num_tables): | |
self.num_tables = num_tables | |
self.tables = [] | |
for i in range(self.num_tables): | |
self.tables.append(Table(hash_size)) | |
def add(self, id: int, hash: List[int], label: int): | |
for table in self.tables: | |
table.add(id, hash, label) | |
def query(self, hashes: List[int]): | |
results = [] | |
for table in self.tables: | |
results.extend(table.query(hashes)) | |
return results | |
class BuildLSHTable: | |
def __init__( | |
self, | |
model: Union[torch.nn.Module, None], | |
batch_size: int = 48, | |
hash_size: int = hash_size, | |
dim: int = hidden_dim, | |
num_tables: int = 10, | |
): | |
self.hash_size = hash_size | |
self.dim = dim | |
self.num_tables = num_tables | |
self.lsh = LSH(self.hash_size, self.num_tables) | |
self.batch_size = batch_size | |
self.hash_fn = compute_hash(model.to(device)) | |
def build(self, ds: datasets.DatasetDict): | |
dataset_hashed = ds.map(self.hash_fn, batched=True, batch_size=self.batch_size) | |
for id in tqdm(range(len(dataset_hashed))): | |
hash, label = dataset_hashed[id]["hashes"], dataset_hashed[id]["labels"] | |
self.lsh.add(id, hash, label) | |
def query(self, image, verbose=True): | |
if isinstance(image, str): | |
image = Image.open(image).convert("RGB") | |
# Compute the hashes of the query image and fetch the results. | |
example_batch = dict(image=[image]) | |
hashes = self.hash_fn(example_batch)["hashes"][0] | |
results = self.lsh.query(hashes) | |
if verbose: | |
print("Matches:", len(results)) | |
# Calculate Jaccard index to quantify the similarity. | |
counts = {} | |
for r in results: | |
if r["id_label"] in counts: | |
counts[r["id_label"]] += 1 | |
else: | |
counts[r["id_label"]] = 1 | |
for k in counts: | |
counts[k] = float(counts[k]) / self.dim | |
return counts | |