- .gitignore +2 -1
- ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml +143 -0
- ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt +3 -0
- craftsman/models/autoencoders/__pycache__/michelangelo_autoencoder.cpython-38.pyc +0 -0
- craftsman/models/autoencoders/michelangelo_autoencoder.py +78 -0
- gradio_app.py +4 -2
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
gradio_cached_dir
|
|
|
|
1 |
+
gradio_cached_dir
|
2 |
+
jiangxin
|
ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: michelangelo-image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-170k
|
2 |
+
description: ''
|
3 |
+
tag: michelangelo-aligned-autoencoder+n4096+noise0.0+pfeat3+zeroemb0.0+normembFalse+lr5e-05+qkvbiasFalse+nfreq8+ln_postTrue
|
4 |
+
seed: 0
|
5 |
+
use_timestamp: true
|
6 |
+
timestamp: ''
|
7 |
+
exp_root_dir: outputs
|
8 |
+
exp_dir: outputs/michelangelo-image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-170k
|
9 |
+
trial_name: michelangelo-aligned-autoencoder+n4096+noise0.0+pfeat3+zeroemb0.0+normembFalse+lr5e-05+qkvbiasFalse+nfreq8+ln_postTrue
|
10 |
+
trial_dir: outputs/michelangelo-image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-170k/michelangelo-aligned-autoencoder+n4096+noise0.0+pfeat3+zeroemb0.0+normembFalse+lr5e-05+qkvbiasFalse+nfreq8+ln_postTrue
|
11 |
+
n_gpus: 8
|
12 |
+
resume: ./ckpts/3DNativeGeneration/michelangelo-image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-170k.ckpt
|
13 |
+
data_type: objaverse-datamodule
|
14 |
+
data:
|
15 |
+
root_dir: data/objaverse_clean/cap3d_high_quality_170k_images
|
16 |
+
data_type: occupancy
|
17 |
+
n_samples: 4096
|
18 |
+
noise_sigma: 0.0
|
19 |
+
load_supervision: false
|
20 |
+
supervision_type: occupancy
|
21 |
+
n_supervision: 10000
|
22 |
+
load_image: true
|
23 |
+
image_data_path: data/objaverse_clean/raw_data/images/cap3d_high_quality_170k
|
24 |
+
image_type: mvrgb
|
25 |
+
idx:
|
26 |
+
- 0
|
27 |
+
- 4
|
28 |
+
- 8
|
29 |
+
- 12
|
30 |
+
- 16
|
31 |
+
n_views: 4
|
32 |
+
load_caption: false
|
33 |
+
rotate_points: false
|
34 |
+
batch_size: 32
|
35 |
+
num_workers: 16
|
36 |
+
system_type: shape-diffusion-system
|
37 |
+
system:
|
38 |
+
val_samples_json: val_data/mv_images/val_samples_rgb_mvimage.json
|
39 |
+
z_scale_factor: 1.0
|
40 |
+
guidance_scale: 7.5
|
41 |
+
num_inference_steps: 50
|
42 |
+
eta: 0.0
|
43 |
+
shape_model_type: michelangelo-aligned-autoencoder
|
44 |
+
shape_model:
|
45 |
+
num_latents: 256
|
46 |
+
embed_dim: 64
|
47 |
+
point_feats: 3
|
48 |
+
out_dim: 1
|
49 |
+
num_freqs: 8
|
50 |
+
include_pi: false
|
51 |
+
heads: 12
|
52 |
+
width: 768
|
53 |
+
num_encoder_layers: 8
|
54 |
+
num_decoder_layers: 16
|
55 |
+
use_ln_post: true
|
56 |
+
init_scale: 0.25
|
57 |
+
qkv_bias: false
|
58 |
+
use_flash: true
|
59 |
+
use_checkpoint: true
|
60 |
+
condition_model_type: clip-embedder
|
61 |
+
condition_model:
|
62 |
+
pretrained_model_name_or_path: openai/clip-vit-large-patch14
|
63 |
+
encode_camera: true
|
64 |
+
camera_embeds_dim: 32
|
65 |
+
n_views: 4
|
66 |
+
empty_embeds_ratio: 0.1
|
67 |
+
normalize_embeds: false
|
68 |
+
zero_uncond_embeds: true
|
69 |
+
denoiser_model_type: simple-denoiser
|
70 |
+
denoiser_model:
|
71 |
+
input_channels: 64
|
72 |
+
output_channels: 64
|
73 |
+
n_ctx: 256
|
74 |
+
width: 768
|
75 |
+
layers: 6
|
76 |
+
heads: 12
|
77 |
+
context_dim: 1024
|
78 |
+
init_scale: 1.0
|
79 |
+
skip_ln: true
|
80 |
+
use_checkpoint: true
|
81 |
+
noise_scheduler_type: diffusers.schedulers.DDPMScheduler
|
82 |
+
noise_scheduler:
|
83 |
+
num_train_timesteps: 1000
|
84 |
+
beta_start: 0.00085
|
85 |
+
beta_end: 0.012
|
86 |
+
beta_schedule: scaled_linear
|
87 |
+
variance_type: fixed_small
|
88 |
+
clip_sample: false
|
89 |
+
denoise_scheduler_type: diffusers.schedulers.DDIMScheduler
|
90 |
+
denoise_scheduler:
|
91 |
+
num_train_timesteps: 1000
|
92 |
+
beta_start: 0.00085
|
93 |
+
beta_end: 0.012
|
94 |
+
beta_schedule: scaled_linear
|
95 |
+
clip_sample: false
|
96 |
+
set_alpha_to_one: false
|
97 |
+
steps_offset: 1
|
98 |
+
loggers:
|
99 |
+
wandb:
|
100 |
+
enable: false
|
101 |
+
project: JiangXin
|
102 |
+
name: text-to-shape-diffusion+michelangelo-image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-170k+michelangelo-aligned-autoencoder+n4096+noise0.0+pfeat3+zeroemb0.0+normembFalse+lr5e-05+qkvbiasFalse+nfreq8+ln_postTrue
|
103 |
+
loss:
|
104 |
+
loss_type: mse
|
105 |
+
lambda_diffusion: 1.0
|
106 |
+
optimizer:
|
107 |
+
name: AdamW
|
108 |
+
args:
|
109 |
+
lr: 5.0e-05
|
110 |
+
betas:
|
111 |
+
- 0.9
|
112 |
+
- 0.99
|
113 |
+
eps: 1.0e-06
|
114 |
+
scheduler:
|
115 |
+
name: SequentialLR
|
116 |
+
interval: step
|
117 |
+
schedulers:
|
118 |
+
- name: LinearLR
|
119 |
+
interval: step
|
120 |
+
args:
|
121 |
+
start_factor: 1.0e-06
|
122 |
+
end_factor: 1.0
|
123 |
+
total_iters: 5000
|
124 |
+
- name: CosineAnnealingLR
|
125 |
+
interval: step
|
126 |
+
args:
|
127 |
+
T_max: 5000
|
128 |
+
eta_min: 0.0
|
129 |
+
milestones:
|
130 |
+
- 5000
|
131 |
+
trainer:
|
132 |
+
num_nodes: 2
|
133 |
+
max_epochs: 100000
|
134 |
+
log_every_n_steps: 5
|
135 |
+
num_sanity_val_steps: 1
|
136 |
+
check_val_every_n_epoch: 3
|
137 |
+
enable_progress_bar: true
|
138 |
+
precision: 16-mixed
|
139 |
+
strategy: ddp_find_unused_parameters_true
|
140 |
+
checkpoint:
|
141 |
+
save_last: true
|
142 |
+
save_top_k: -1
|
143 |
+
every_n_train_steps: 5000
|
ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41248dba953cad356c491e7584b4171920f2ad95af10b0f78225eda867dbb7c4
|
3 |
+
size 3722911570
|
craftsman/models/autoencoders/__pycache__/michelangelo_autoencoder.cpython-38.pyc
CHANGED
Binary files a/craftsman/models/autoencoders/__pycache__/michelangelo_autoencoder.cpython-38.pyc and b/craftsman/models/autoencoders/__pycache__/michelangelo_autoencoder.cpython-38.pyc differ
|
|
craftsman/models/autoencoders/michelangelo_autoencoder.py
CHANGED
@@ -324,3 +324,81 @@ class MichelangeloAutoencoder(AutoEncoder):
|
|
324 |
logits = self.decoder(queries, latents).squeeze(-1)
|
325 |
|
326 |
return logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
logits = self.decoder(queries, latents).squeeze(-1)
|
325 |
|
326 |
return logits
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
@craftsman.register("michelangelo-aligned-autoencoder")
|
332 |
+
class MichelangeloAlignedAutoencoder(MichelangeloAutoencoder):
|
333 |
+
r"""
|
334 |
+
A VAE model for encoding shapes into latents and decoding latent representations into shapes.
|
335 |
+
"""
|
336 |
+
@dataclass
|
337 |
+
class Config(MichelangeloAutoencoder.Config):
|
338 |
+
clip_model_version: Optional[str] = None
|
339 |
+
|
340 |
+
cfg: Config
|
341 |
+
|
342 |
+
def configure(self) -> None:
|
343 |
+
if self.cfg.clip_model_version is not None:
|
344 |
+
self.clip_model: CLIPModel = CLIPModel.from_pretrained(self.cfg.clip_model_version)
|
345 |
+
self.projection = nn.Parameter(torch.empty(self.cfg.width, self.clip_model.projection_dim))
|
346 |
+
self.logit_scale = torch.exp(self.clip_model.logit_scale.data)
|
347 |
+
nn.init.normal_(self.projection, std=self.clip_model.projection_dim ** -0.5)
|
348 |
+
else:
|
349 |
+
self.projection = nn.Parameter(torch.empty(self.cfg.width, 768))
|
350 |
+
nn.init.normal_(self.projection, std=768 ** -0.5)
|
351 |
+
|
352 |
+
self.cfg.num_latents = self.cfg.num_latents + 1
|
353 |
+
|
354 |
+
super().configure()
|
355 |
+
|
356 |
+
def encode(self,
|
357 |
+
surface: torch.FloatTensor,
|
358 |
+
sample_posterior: bool = True):
|
359 |
+
"""
|
360 |
+
Args:
|
361 |
+
surface (torch.FloatTensor): [B, N, 3+C]
|
362 |
+
sample_posterior (bool):
|
363 |
+
|
364 |
+
Returns:
|
365 |
+
latents (torch.FloatTensor)
|
366 |
+
posterior (DiagonalGaussianDistribution or None):
|
367 |
+
"""
|
368 |
+
assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
|
369 |
+
Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
|
370 |
+
|
371 |
+
pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3
|
372 |
+
shape_latents = self.encoder(pc, feats) # B, num_latents, width
|
373 |
+
shape_embeds = shape_latents[:, 0] # B, width
|
374 |
+
shape_latents = shape_latents[:, 1:] # B, num_latents-1, width
|
375 |
+
kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior) # B, num_latents, embed_dim
|
376 |
+
|
377 |
+
shape_embeds = shape_embeds @ self.projection
|
378 |
+
return shape_embeds, kl_embed, posterior
|
379 |
+
|
380 |
+
def forward(self,
|
381 |
+
surface: torch.FloatTensor,
|
382 |
+
queries: torch.FloatTensor,
|
383 |
+
sample_posterior: bool = True):
|
384 |
+
"""
|
385 |
+
Args:
|
386 |
+
surface (torch.FloatTensor): [B, N, 3+C]
|
387 |
+
queries (torch.FloatTensor): [B, P, 3]
|
388 |
+
sample_posterior (bool):
|
389 |
+
|
390 |
+
Returns:
|
391 |
+
shape_embeds (torch.FloatTensor): [B, width]
|
392 |
+
latents (torch.FloatTensor): [B, num_latents, embed_dim]
|
393 |
+
posterior (DiagonalGaussianDistribution or None).
|
394 |
+
logits (torch.FloatTensor): [B, P]
|
395 |
+
"""
|
396 |
+
|
397 |
+
shape_embeds, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior)
|
398 |
+
|
399 |
+
latents = self.decode(kl_embed) # [B, num_latents - 1, width]
|
400 |
+
|
401 |
+
logits = self.query(queries, latents) # [B,]
|
402 |
+
|
403 |
+
return shape_embeds, latents, posterior, logits
|
404 |
+
|
gradio_app.py
CHANGED
@@ -170,8 +170,10 @@ if __name__=="__main__":
|
|
170 |
# mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
|
171 |
|
172 |
# for 3D latent set diffusion
|
173 |
-
ckpt_path =
|
174 |
-
config_path =
|
|
|
|
|
175 |
scheluder_dict = OrderedDict({
|
176 |
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
|
177 |
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
|
|
|
170 |
# mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
|
171 |
|
172 |
# for 3D latent set diffusion
|
173 |
+
ckpt_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt"
|
174 |
+
config_path = "./ckpts/image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml"
|
175 |
+
# ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
|
176 |
+
# config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
|
177 |
scheluder_dict = OrderedDict({
|
178 |
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
|
179 |
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
|