exp_root_dir: "outputs" name: "michelangelo-autoencoder/l512-e64-ne8-nd16" tag: "${rmspace:n${data.n_samples}+${data.supervision_type}+rot${data.rotate}+noise${data.noise_sigma}+${system.shape_model.embed_type}+dsample${system.shape_model.use_downsample}+pfeat${system.shape_model.point_feats}+logits${system.loss.lambda_logits}+kl${system.loss.lambda_kl}+lr${system.optimizer.args.lr},_}" seed: 0 data_type: "objaverse-datamodule" data: root_dir: "data/objaverse_clean/sdf_100k" data_type: "sdf" n_samples: 4096 noise_sigma: 0. rotate: False load_supervision: True supervision_type: "occupancy" n_supervision: 4096 load_image: False # whether to load images load_caption: False # whether to load captions batch_size: 128 num_workers: 16 system_type: "shape-autoencoder-system" system: sample_posterior: true shape_model_type: "michelangelo-autoencoder" shape_model: num_latents: 512 # 512 embed_dim: 64 point_feats: 3 # xyz + normal out_dim: 1 # only occupancy embed_type: "fourier" num_freqs: 8 include_pi: false heads: 12 width: 768 num_encoder_layers: 8 num_decoder_layers: 16 use_ln_post: true init_scale: 0.25 qkv_bias: true use_flash: true use_checkpoint: true use_downsample: true loggers: wandb: enable: false project: "CraftsMan" name: shape-autoencoder+${name}+${tag} loss: lambda_logits: 1. lambda_kl: 0.001 optimizer: name: AdamW args: lr: 1.e-4 betas: [0.9, 0.99] eps: 1.e-6 scheduler: name: SequentialLR interval: step schedulers: - name: LinearLR interval: step args: start_factor: 1e-6 end_factor: 1.0 total_iters: 5000 - name: CosineAnnealingLR interval: step args: T_max: 5000 eta_min: 0. milestones: [5000] trainer: num_nodes: 1 max_epochs: 100000 log_every_n_steps: 5 num_sanity_val_steps: 1 # val_check_interval: 200 check_val_every_n_epoch: 10 enable_progress_bar: true precision: 16-mixed checkpoint: save_last: true save_top_k: -1 every_n_train_steps: 5000