File size: 11,175 Bytes
660349e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team and Jangwon Park
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for KoBERT model """


import logging
import os
import unicodedata
from shutil import copyfile

from transformers import PreTrainedTokenizer

logger = logging.getLogger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "tokenizer_78b3253a26.model",
    "vocab_txt": "vocab.txt",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/tokenizer_78b3253a26.model",
        "monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/tokenizer_78b3253a26.model",
        "monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/tokenizer_78b3253a26.model",
    },
    "vocab_txt": {
        "monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/vocab.txt",
        "monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/vocab.txt",
        "monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/vocab.txt",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "monologg/kobert": 512,
    "monologg/kobert-lm": 512,
    "monologg/distilkobert": 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    "monologg/kobert": {"do_lower_case": False},
    "monologg/kobert-lm": {"do_lower_case": False},
    "monologg/distilkobert": {"do_lower_case": False},
}

SPIECE_UNDERLINE = "▁"


class KoBertTokenizer(PreTrainedTokenizer):
    """

    SentencePiece based tokenizer. Peculiarities:

        - requires `SentencePiece <https://github.com/google/sentencepiece>`_

    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

    def __init__(

        self,

        vocab_file,

        vocab_txt,

        do_lower_case=False,

        remove_space=True,

        keep_accents=False,

        unk_token="[UNK]",

        sep_token="[SEP]",

        pad_token="[PAD]",

        cls_token="[CLS]",

        mask_token="[MASK]",

        **kwargs,

    ):
        super().__init__(
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            **kwargs,
        )

        # Build vocab
        self.token2idx = dict()
        self.idx2token = []
        with open(vocab_txt, "r", encoding="utf-8") as f:
            for idx, token in enumerate(f):
                token = token.strip()
                self.token2idx[token] = idx
                self.idx2token.append(token)

        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning(
                "You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
                "pip install sentencepiece"
            )

        self.do_lower_case = do_lower_case
        self.remove_space = remove_space
        self.keep_accents = keep_accents
        self.vocab_file = vocab_file
        self.vocab_txt = vocab_txt

        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(vocab_file)

    @property
    def vocab_size(self):
        return len(self.idx2token)

    def get_vocab(self):
        return dict(self.token2idx, **self.added_tokens_encoder)

    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning(
                "You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
                "pip install sentencepiece"
            )
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(self.vocab_file)

    def preprocess_text(self, inputs):
        if self.remove_space:
            outputs = " ".join(inputs.strip().split())
        else:
            outputs = inputs
        outputs = outputs.replace("``", '"').replace("''", '"')

        if not self.keep_accents:
            outputs = unicodedata.normalize("NFKD", outputs)
            outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
        if self.do_lower_case:
            outputs = outputs.lower()

        return outputs

    def _tokenize(self, text):
        """Tokenize a string."""
        text = self.preprocess_text(text)
        pieces = self.sp_model.encode(text, out_type=str)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
                if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        return new_pieces

    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.token2idx.get(token, self.token2idx[self.unk_token])

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.idx2token[index]

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (strings for sub-words) in a single string."""
        out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
        return out_string

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        """

        Build model inputs from a sequence or a pair of sequence for sequence classification tasks

        by concatenating and adding special tokens.

        A KoBERT sequence has the following format:

            single sequence: [CLS] X [SEP]

            pair of sequences: [CLS] A [SEP] B [SEP]

        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + token_ids_1 + sep

    def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
        """

        Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding

        special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.

        Args:

            token_ids_0: list of ids (must not contain special tokens)

            token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids

                for sequence pairs

            already_has_special_tokens: (default False) Set to True if the token list is already formated with

                special tokens for the model

        Returns:

            A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.

        """

        if already_has_special_tokens:
            if token_ids_1 is not None:
                raise ValueError(
                    "You should not supply a second sequence if the provided sequence of "
                    "ids is already formated with special tokens for the model."
                )
            return list(
                map(
                    lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0,
                    token_ids_0,
                )
            )

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]

    def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
        """

        Creates a mask from the two sequences passed to be used in a sequence-pair classification task.

        A KoBERT sequence pair mask has the following format:

        0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

        | first sequence    | second sequence

        if token_ids_1 is None, only returns the first portion of the mask (0's).

        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self, save_directory):
        """Save the sentencepiece vocabulary (copy original file) and special tokens file

        to a directory.

        """
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
            return

        # 1. Save sentencepiece model
        out_vocab_model = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"])

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_model):
            copyfile(self.vocab_file, out_vocab_model)

        # 2. Save vocab.txt
        index = 0
        out_vocab_txt = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_txt"])
        with open(out_vocab_txt, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.token2idx.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning(
                        "Saving vocabulary to {}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!".format(out_vocab_txt)
                    )
                    index = token_index
                writer.write(token + "\n")
                index += 1

        return out_vocab_model, out_vocab_txt