Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS, Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models. | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from htmlTemplates import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models. | |
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader | |
from tempfile import NamedTemporaryFile | |
import os | |
def get_pdf_text(pdf_docs): | |
with NamedTemporaryFile() as temp_file: | |
temp_file.write(pdf_docs.getvalue()) | |
temp_file.seek(0) | |
pdf_loader = PyPDFLoader(temp_file.name) | |
# print('pdf_loader = ', pdf_loader) | |
pdf_doc = pdf_loader.load() | |
# print('pdf_doc = ',pdf_doc) | |
return pdf_doc | |
def get_text_file(docs): | |
with NamedTemporaryFile() as temp_file: | |
temp_file.write(docs.getvalue()) | |
temp_file.seek(0) | |
text_loader = TextLoader(temp_file.name) | |
text_doc = text_loader.load() | |
return text_doc | |
def get_csv_file(docs): | |
with NamedTemporaryFile() as temp_file: | |
temp_file.write(docs.getvalue()) | |
temp_file.seek(0) | |
text_loader = CSVLoader(temp_file.name) | |
text_doc = text_loader.load() | |
return text_doc | |
def get_json_file(docs): | |
with NamedTemporaryFile() as temp_file: | |
temp_file.write(docs.getvalue()) | |
temp_file.seek(0) | |
json_loader = JSONLoader(temp_file.name, | |
jq_schema='.scans[].relationships', | |
text_content=False) | |
json_doc = json_loader.load() | |
return json_doc | |
def get_text_chunks(documents): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
documents = text_splitter.split_documents(documents) | |
return documents | |
def get_vectorstore(text_chunks): | |
# Load the desired embeddings model. | |
embeddings = OpenAIEmbeddings() | |
vectorstore = FAISS.from_documents(text_chunks, embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = ChatOpenAI() | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple PDFs", | |
page_icon=":books:") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple PDFs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
openai_key = st.text_input("Paste your OpenAI API key (sk-...)") | |
if openai_key: | |
os.environ["OPENAI_API_KEY"] = openai_key | |
st.subheader("Your documents") | |
docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# get pdf text | |
doc_list = [] | |
for file in docs: | |
print('file - type : ', file.type) | |
if file.type == 'text/plain': | |
# file is .txt | |
doc_list.extend(get_text_file(file)) | |
elif file.type in ['application/octet-stream', 'application/pdf']: | |
# file is .pdf | |
doc_list.extend(get_pdf_text(file)) | |
elif file.type == 'text/csv': | |
# file is .csv | |
doc_list.extend(get_csv_file(file)) | |
elif file.type == 'application/json': | |
# file is .json | |
doc_list.extend(get_json_file(file)) | |
# get the text chunks | |
text_chunks = get_text_chunks(doc_list) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain( | |
vectorstore) | |
if __name__ == '__main__': | |
main() | |