File size: 25,196 Bytes
87b62f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# Copyright (c) OpenMMLab. All rights reserved.
import numbers

import cv2
import numpy as np

from ..utils import to_2tuple
from .io import imread_backend

try:
    from PIL import Image
except ImportError:
    Image = None


def _scale_size(size, scale):
    """Rescale a size by a ratio.

    Args:
        size (tuple[int]): (w, h).
        scale (float | tuple(float)): Scaling factor.

    Returns:
        tuple[int]: scaled size.
    """
    if isinstance(scale, (float, int)):
        scale = (scale, scale)
    w, h = size
    return int(w * float(scale[0]) + 0.5), int(h * float(scale[1]) + 0.5)


cv2_interp_codes = {
    'nearest': cv2.INTER_NEAREST,
    'bilinear': cv2.INTER_LINEAR,
    'bicubic': cv2.INTER_CUBIC,
    'area': cv2.INTER_AREA,
    'lanczos': cv2.INTER_LANCZOS4
}

if Image is not None:
    pillow_interp_codes = {
        'nearest': Image.NEAREST,
        'bilinear': Image.BILINEAR,
        'bicubic': Image.BICUBIC,
        'box': Image.BOX,
        'lanczos': Image.LANCZOS,
        'hamming': Image.HAMMING
    }


def imresize(img,
             size,
             return_scale=False,
             interpolation='bilinear',
             out=None,
             backend=None):
    """Resize image to a given size.

    Args:
        img (ndarray): The input image.
        size (tuple[int]): Target size (w, h).
        return_scale (bool): Whether to return `w_scale` and `h_scale`.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend.
        out (ndarray): The output destination.
        backend (str | None): The image resize backend type. Options are `cv2`,
            `pillow`, `None`. If backend is None, the global imread_backend
            specified by ``mmcv.use_backend()`` will be used. Default: None.

    Returns:
        tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
            `resized_img`.
    """
    h, w = img.shape[:2]
    if backend is None:
        backend = imread_backend
    if backend not in ['cv2', 'pillow']:
        raise ValueError(f'backend: {backend} is not supported for resize.'
                         f"Supported backends are 'cv2', 'pillow'")

    if backend == 'pillow':
        assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
        pil_image = Image.fromarray(img)
        pil_image = pil_image.resize(size, pillow_interp_codes[interpolation])
        resized_img = np.array(pil_image)
    else:
        resized_img = cv2.resize(
            img, size, dst=out, interpolation=cv2_interp_codes[interpolation])
    if not return_scale:
        return resized_img
    else:
        w_scale = size[0] / w
        h_scale = size[1] / h
        return resized_img, w_scale, h_scale


def imresize_to_multiple(img,
                         divisor,
                         size=None,
                         scale_factor=None,
                         keep_ratio=False,
                         return_scale=False,
                         interpolation='bilinear',
                         out=None,
                         backend=None):
    """Resize image according to a given size or scale factor and then rounds
    up the the resized or rescaled image size to the nearest value that can be
    divided by the divisor.

    Args:
        img (ndarray): The input image.
        divisor (int | tuple): Resized image size will be a multiple of
            divisor. If divisor is a tuple, divisor should be
            (w_divisor, h_divisor).
        size (None | int | tuple[int]): Target size (w, h). Default: None.
        scale_factor (None | float | tuple[float]): Multiplier for spatial
            size. Should match input size if it is a tuple and the 2D style is
            (w_scale_factor, h_scale_factor). Default: None.
        keep_ratio (bool): Whether to keep the aspect ratio when resizing the
            image. Default: False.
        return_scale (bool): Whether to return `w_scale` and `h_scale`.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend.
        out (ndarray): The output destination.
        backend (str | None): The image resize backend type. Options are `cv2`,
            `pillow`, `None`. If backend is None, the global imread_backend
            specified by ``mmcv.use_backend()`` will be used. Default: None.

    Returns:
        tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
            `resized_img`.
    """
    h, w = img.shape[:2]
    if size is not None and scale_factor is not None:
        raise ValueError('only one of size or scale_factor should be defined')
    elif size is None and scale_factor is None:
        raise ValueError('one of size or scale_factor should be defined')
    elif size is not None:
        size = to_2tuple(size)
        if keep_ratio:
            size = rescale_size((w, h), size, return_scale=False)
    else:
        size = _scale_size((w, h), scale_factor)

    divisor = to_2tuple(divisor)
    size = tuple([int(np.ceil(s / d)) * d for s, d in zip(size, divisor)])
    resized_img, w_scale, h_scale = imresize(
        img,
        size,
        return_scale=True,
        interpolation=interpolation,
        out=out,
        backend=backend)
    if return_scale:
        return resized_img, w_scale, h_scale
    else:
        return resized_img


def imresize_like(img,
                  dst_img,
                  return_scale=False,
                  interpolation='bilinear',
                  backend=None):
    """Resize image to the same size of a given image.

    Args:
        img (ndarray): The input image.
        dst_img (ndarray): The target image.
        return_scale (bool): Whether to return `w_scale` and `h_scale`.
        interpolation (str): Same as :func:`resize`.
        backend (str | None): Same as :func:`resize`.

    Returns:
        tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
            `resized_img`.
    """
    h, w = dst_img.shape[:2]
    return imresize(img, (w, h), return_scale, interpolation, backend=backend)


def rescale_size(old_size, scale, return_scale=False):
    """Calculate the new size to be rescaled to.

    Args:
        old_size (tuple[int]): The old size (w, h) of image.
        scale (float | tuple[int]): The scaling factor or maximum size.
            If it is a float number, then the image will be rescaled by this
            factor, else if it is a tuple of 2 integers, then the image will
            be rescaled as large as possible within the scale.
        return_scale (bool): Whether to return the scaling factor besides the
            rescaled image size.

    Returns:
        tuple[int]: The new rescaled image size.
    """
    w, h = old_size
    if isinstance(scale, (float, int)):
        if scale <= 0:
            raise ValueError(f'Invalid scale {scale}, must be positive.')
        scale_factor = scale
    elif isinstance(scale, tuple):
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w),
                           max_short_edge / min(h, w))
    else:
        raise TypeError(
            f'Scale must be a number or tuple of int, but got {type(scale)}')

    new_size = _scale_size((w, h), scale_factor)

    if return_scale:
        return new_size, scale_factor
    else:
        return new_size


def imrescale(img,
              scale,
              return_scale=False,
              interpolation='bilinear',
              backend=None):
    """Resize image while keeping the aspect ratio.

    Args:
        img (ndarray): The input image.
        scale (float | tuple[int]): The scaling factor or maximum size.
            If it is a float number, then the image will be rescaled by this
            factor, else if it is a tuple of 2 integers, then the image will
            be rescaled as large as possible within the scale.
        return_scale (bool): Whether to return the scaling factor besides the
            rescaled image.
        interpolation (str): Same as :func:`resize`.
        backend (str | None): Same as :func:`resize`.

    Returns:
        ndarray: The rescaled image.
    """
    h, w = img.shape[:2]
    new_size, scale_factor = rescale_size((w, h), scale, return_scale=True)
    rescaled_img = imresize(
        img, new_size, interpolation=interpolation, backend=backend)
    if return_scale:
        return rescaled_img, scale_factor
    else:
        return rescaled_img


def imflip(img, direction='horizontal'):
    """Flip an image horizontally or vertically.

    Args:
        img (ndarray): Image to be flipped.
        direction (str): The flip direction, either "horizontal" or
            "vertical" or "diagonal".

    Returns:
        ndarray: The flipped image.
    """
    assert direction in ['horizontal', 'vertical', 'diagonal']
    if direction == 'horizontal':
        return np.flip(img, axis=1)
    elif direction == 'vertical':
        return np.flip(img, axis=0)
    else:
        return np.flip(img, axis=(0, 1))


def imflip_(img, direction='horizontal'):
    """Inplace flip an image horizontally or vertically.

    Args:
        img (ndarray): Image to be flipped.
        direction (str): The flip direction, either "horizontal" or
            "vertical" or "diagonal".

    Returns:
        ndarray: The flipped image (inplace).
    """
    assert direction in ['horizontal', 'vertical', 'diagonal']
    if direction == 'horizontal':
        return cv2.flip(img, 1, img)
    elif direction == 'vertical':
        return cv2.flip(img, 0, img)
    else:
        return cv2.flip(img, -1, img)


def imrotate(img,
             angle,
             center=None,
             scale=1.0,
             border_value=0,
             interpolation='bilinear',
             auto_bound=False):
    """Rotate an image.

    Args:
        img (ndarray): Image to be rotated.
        angle (float): Rotation angle in degrees, positive values mean
            clockwise rotation.
        center (tuple[float], optional): Center point (w, h) of the rotation in
            the source image. If not specified, the center of the image will be
            used.
        scale (float): Isotropic scale factor.
        border_value (int): Border value.
        interpolation (str): Same as :func:`resize`.
        auto_bound (bool): Whether to adjust the image size to cover the whole
            rotated image.

    Returns:
        ndarray: The rotated image.
    """
    if center is not None and auto_bound:
        raise ValueError('`auto_bound` conflicts with `center`')
    h, w = img.shape[:2]
    if center is None:
        center = ((w - 1) * 0.5, (h - 1) * 0.5)
    assert isinstance(center, tuple)

    matrix = cv2.getRotationMatrix2D(center, -angle, scale)
    if auto_bound:
        cos = np.abs(matrix[0, 0])
        sin = np.abs(matrix[0, 1])
        new_w = h * sin + w * cos
        new_h = h * cos + w * sin
        matrix[0, 2] += (new_w - w) * 0.5
        matrix[1, 2] += (new_h - h) * 0.5
        w = int(np.round(new_w))
        h = int(np.round(new_h))
    rotated = cv2.warpAffine(
        img,
        matrix, (w, h),
        flags=cv2_interp_codes[interpolation],
        borderValue=border_value)
    return rotated


def bbox_clip(bboxes, img_shape):
    """Clip bboxes to fit the image shape.

    Args:
        bboxes (ndarray): Shape (..., 4*k)
        img_shape (tuple[int]): (height, width) of the image.

    Returns:
        ndarray: Clipped bboxes.
    """
    assert bboxes.shape[-1] % 4 == 0
    cmin = np.empty(bboxes.shape[-1], dtype=bboxes.dtype)
    cmin[0::2] = img_shape[1] - 1
    cmin[1::2] = img_shape[0] - 1
    clipped_bboxes = np.maximum(np.minimum(bboxes, cmin), 0)
    return clipped_bboxes


def bbox_scaling(bboxes, scale, clip_shape=None):
    """Scaling bboxes w.r.t the box center.

    Args:
        bboxes (ndarray): Shape(..., 4).
        scale (float): Scaling factor.
        clip_shape (tuple[int], optional): If specified, bboxes that exceed the
            boundary will be clipped according to the given shape (h, w).

    Returns:
        ndarray: Scaled bboxes.
    """
    if float(scale) == 1.0:
        scaled_bboxes = bboxes.copy()
    else:
        w = bboxes[..., 2] - bboxes[..., 0] + 1
        h = bboxes[..., 3] - bboxes[..., 1] + 1
        dw = (w * (scale - 1)) * 0.5
        dh = (h * (scale - 1)) * 0.5
        scaled_bboxes = bboxes + np.stack((-dw, -dh, dw, dh), axis=-1)
    if clip_shape is not None:
        return bbox_clip(scaled_bboxes, clip_shape)
    else:
        return scaled_bboxes


def imcrop(img, bboxes, scale=1.0, pad_fill=None):
    """Crop image patches.

    3 steps: scale the bboxes -> clip bboxes -> crop and pad.

    Args:
        img (ndarray): Image to be cropped.
        bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes.
        scale (float, optional): Scale ratio of bboxes, the default value
            1.0 means no padding.
        pad_fill (Number | list[Number]): Value to be filled for padding.
            Default: None, which means no padding.

    Returns:
        list[ndarray] | ndarray: The cropped image patches.
    """
    chn = 1 if img.ndim == 2 else img.shape[2]
    if pad_fill is not None:
        if isinstance(pad_fill, (int, float)):
            pad_fill = [pad_fill for _ in range(chn)]
        assert len(pad_fill) == chn

    _bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes
    scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32)
    clipped_bbox = bbox_clip(scaled_bboxes, img.shape)

    patches = []
    for i in range(clipped_bbox.shape[0]):
        x1, y1, x2, y2 = tuple(clipped_bbox[i, :])
        if pad_fill is None:
            patch = img[y1:y2 + 1, x1:x2 + 1, ...]
        else:
            _x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :])
            if chn == 1:
                patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1)
            else:
                patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn)
            patch = np.array(
                pad_fill, dtype=img.dtype) * np.ones(
                    patch_shape, dtype=img.dtype)
            x_start = 0 if _x1 >= 0 else -_x1
            y_start = 0 if _y1 >= 0 else -_y1
            w = x2 - x1 + 1
            h = y2 - y1 + 1
            patch[y_start:y_start + h, x_start:x_start + w,
                  ...] = img[y1:y1 + h, x1:x1 + w, ...]
        patches.append(patch)

    if bboxes.ndim == 1:
        return patches[0]
    else:
        return patches


def impad(img,
          *,
          shape=None,
          padding=None,
          pad_val=0,
          padding_mode='constant'):
    """Pad the given image to a certain shape or pad on all sides with
    specified padding mode and padding value.

    Args:
        img (ndarray): Image to be padded.
        shape (tuple[int]): Expected padding shape (h, w). Default: None.
        padding (int or tuple[int]): Padding on each border. If a single int is
            provided this is used to pad all borders. If tuple of length 2 is
            provided this is the padding on left/right and top/bottom
            respectively. If a tuple of length 4 is provided this is the
            padding for the left, top, right and bottom borders respectively.
            Default: None. Note that `shape` and `padding` can not be both
            set.
        pad_val (Number | Sequence[Number]): Values to be filled in padding
            areas when padding_mode is 'constant'. Default: 0.
        padding_mode (str): Type of padding. Should be: constant, edge,
            reflect or symmetric. Default: constant.

            - constant: pads with a constant value, this value is specified
                with pad_val.
            - edge: pads with the last value at the edge of the image.
            - reflect: pads with reflection of image without repeating the
                last value on the edge. For example, padding [1, 2, 3, 4]
                with 2 elements on both sides in reflect mode will result
                in [3, 2, 1, 2, 3, 4, 3, 2].
            - symmetric: pads with reflection of image repeating the last
                value on the edge. For example, padding [1, 2, 3, 4] with
                2 elements on both sides in symmetric mode will result in
                [2, 1, 1, 2, 3, 4, 4, 3]

    Returns:
        ndarray: The padded image.
    """

    assert (shape is not None) ^ (padding is not None)
    if shape is not None:
        padding = (0, 0, shape[1] - img.shape[1], shape[0] - img.shape[0])

    # check pad_val
    if isinstance(pad_val, tuple):
        assert len(pad_val) == img.shape[-1]
    elif not isinstance(pad_val, numbers.Number):
        raise TypeError('pad_val must be a int or a tuple. '
                        f'But received {type(pad_val)}')

    # check padding
    if isinstance(padding, tuple) and len(padding) in [2, 4]:
        if len(padding) == 2:
            padding = (padding[0], padding[1], padding[0], padding[1])
    elif isinstance(padding, numbers.Number):
        padding = (padding, padding, padding, padding)
    else:
        raise ValueError('Padding must be a int or a 2, or 4 element tuple.'
                         f'But received {padding}')

    # check padding mode
    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']

    border_type = {
        'constant': cv2.BORDER_CONSTANT,
        'edge': cv2.BORDER_REPLICATE,
        'reflect': cv2.BORDER_REFLECT_101,
        'symmetric': cv2.BORDER_REFLECT
    }
    img = cv2.copyMakeBorder(
        img,
        padding[1],
        padding[3],
        padding[0],
        padding[2],
        border_type[padding_mode],
        value=pad_val)

    return img


def impad_to_multiple(img, divisor, pad_val=0):
    """Pad an image to ensure each edge to be multiple to some number.

    Args:
        img (ndarray): Image to be padded.
        divisor (int): Padded image edges will be multiple to divisor.
        pad_val (Number | Sequence[Number]): Same as :func:`impad`.

    Returns:
        ndarray: The padded image.
    """
    pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor
    pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor
    return impad(img, shape=(pad_h, pad_w), pad_val=pad_val)


def cutout(img, shape, pad_val=0):
    """Randomly cut out a rectangle from the original img.

    Args:
        img (ndarray): Image to be cutout.
        shape (int | tuple[int]): Expected cutout shape (h, w). If given as a
            int, the value will be used for both h and w.
        pad_val (int | float | tuple[int | float]): Values to be filled in the
            cut area. Defaults to 0.

    Returns:
        ndarray: The cutout image.
    """

    channels = 1 if img.ndim == 2 else img.shape[2]
    if isinstance(shape, int):
        cut_h, cut_w = shape, shape
    else:
        assert isinstance(shape, tuple) and len(shape) == 2, \
            f'shape must be a int or a tuple with length 2, but got type ' \
            f'{type(shape)} instead.'
        cut_h, cut_w = shape
    if isinstance(pad_val, (int, float)):
        pad_val = tuple([pad_val] * channels)
    elif isinstance(pad_val, tuple):
        assert len(pad_val) == channels, \
            'Expected the num of elements in tuple equals the channels' \
            'of input image. Found {} vs {}'.format(
                len(pad_val), channels)
    else:
        raise TypeError(f'Invalid type {type(pad_val)} for `pad_val`')

    img_h, img_w = img.shape[:2]
    y0 = np.random.uniform(img_h)
    x0 = np.random.uniform(img_w)

    y1 = int(max(0, y0 - cut_h / 2.))
    x1 = int(max(0, x0 - cut_w / 2.))
    y2 = min(img_h, y1 + cut_h)
    x2 = min(img_w, x1 + cut_w)

    if img.ndim == 2:
        patch_shape = (y2 - y1, x2 - x1)
    else:
        patch_shape = (y2 - y1, x2 - x1, channels)

    img_cutout = img.copy()
    patch = np.array(
        pad_val, dtype=img.dtype) * np.ones(
            patch_shape, dtype=img.dtype)
    img_cutout[y1:y2, x1:x2, ...] = patch

    return img_cutout


def _get_shear_matrix(magnitude, direction='horizontal'):
    """Generate the shear matrix for transformation.

    Args:
        magnitude (int | float): The magnitude used for shear.
        direction (str): The flip direction, either "horizontal"
            or "vertical".

    Returns:
        ndarray: The shear matrix with dtype float32.
    """
    if direction == 'horizontal':
        shear_matrix = np.float32([[1, magnitude, 0], [0, 1, 0]])
    elif direction == 'vertical':
        shear_matrix = np.float32([[1, 0, 0], [magnitude, 1, 0]])
    return shear_matrix


def imshear(img,
            magnitude,
            direction='horizontal',
            border_value=0,
            interpolation='bilinear'):
    """Shear an image.

    Args:
        img (ndarray): Image to be sheared with format (h, w)
            or (h, w, c).
        magnitude (int | float): The magnitude used for shear.
        direction (str): The flip direction, either "horizontal"
            or "vertical".
        border_value (int | tuple[int]): Value used in case of a
            constant border.
        interpolation (str): Same as :func:`resize`.

    Returns:
        ndarray: The sheared image.
    """
    assert direction in ['horizontal',
                         'vertical'], f'Invalid direction: {direction}'
    height, width = img.shape[:2]
    if img.ndim == 2:
        channels = 1
    elif img.ndim == 3:
        channels = img.shape[-1]
    if isinstance(border_value, int):
        border_value = tuple([border_value] * channels)
    elif isinstance(border_value, tuple):
        assert len(border_value) == channels, \
            'Expected the num of elements in tuple equals the channels' \
            'of input image. Found {} vs {}'.format(
                len(border_value), channels)
    else:
        raise ValueError(
            f'Invalid type {type(border_value)} for `border_value`')
    shear_matrix = _get_shear_matrix(magnitude, direction)
    sheared = cv2.warpAffine(
        img,
        shear_matrix,
        (width, height),
        # Note case when the number elements in `border_value`
        # greater than 3 (e.g. shearing masks whose channels large
        # than 3) will raise TypeError in `cv2.warpAffine`.
        # Here simply slice the first 3 values in `border_value`.
        borderValue=border_value[:3],
        flags=cv2_interp_codes[interpolation])
    return sheared


def _get_translate_matrix(offset, direction='horizontal'):
    """Generate the translate matrix.

    Args:
        offset (int | float): The offset used for translate.
        direction (str): The translate direction, either
            "horizontal" or "vertical".

    Returns:
        ndarray: The translate matrix with dtype float32.
    """
    if direction == 'horizontal':
        translate_matrix = np.float32([[1, 0, offset], [0, 1, 0]])
    elif direction == 'vertical':
        translate_matrix = np.float32([[1, 0, 0], [0, 1, offset]])
    return translate_matrix


def imtranslate(img,
                offset,
                direction='horizontal',
                border_value=0,
                interpolation='bilinear'):
    """Translate an image.

    Args:
        img (ndarray): Image to be translated with format
            (h, w) or (h, w, c).
        offset (int | float): The offset used for translate.
        direction (str): The translate direction, either "horizontal"
            or "vertical".
        border_value (int | tuple[int]): Value used in case of a
            constant border.
        interpolation (str): Same as :func:`resize`.

    Returns:
        ndarray: The translated image.
    """
    assert direction in ['horizontal',
                         'vertical'], f'Invalid direction: {direction}'
    height, width = img.shape[:2]
    if img.ndim == 2:
        channels = 1
    elif img.ndim == 3:
        channels = img.shape[-1]
    if isinstance(border_value, int):
        border_value = tuple([border_value] * channels)
    elif isinstance(border_value, tuple):
        assert len(border_value) == channels, \
            'Expected the num of elements in tuple equals the channels' \
            'of input image. Found {} vs {}'.format(
                len(border_value), channels)
    else:
        raise ValueError(
            f'Invalid type {type(border_value)} for `border_value`.')
    translate_matrix = _get_translate_matrix(offset, direction)
    translated = cv2.warpAffine(
        img,
        translate_matrix,
        (width, height),
        # Note case when the number elements in `border_value`
        # greater than 3 (e.g. translating masks whose channels
        # large than 3) will raise TypeError in `cv2.warpAffine`.
        # Here simply slice the first 3 values in `border_value`.
        borderValue=border_value[:3],
        flags=cv2_interp_codes[interpolation])
    return translated