File size: 6,997 Bytes
437883c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import pandas as pd
import json
import streamlit as st

import shared_streamlit_funcs as my

if "ld_num_ss_inputs" not in st.session_state:
    st.session_state["ld_num_ss_inputs"] = 1

def increment_ss_inputs():
    st.session_state.ld_num_ss_inputs += 1
def decrement_ss_inputs():
    st.session_state.ld_num_ss_inputs = max(1, st.session_state.ld_num_ss_inputs-1)

def short_cg(cg):
    return {"Teaching, Guidance, and Counseling":"Teaching...",
            "Case Management":"Case Mngmnt",
            "Surveillance":"Surveillance",
            "Treatments and Procedures":"Treatments..."}[cg]

def json_to_output_df(json_str, input_list):
    indata =json.loads(json_str)
    outdata = {"Output":[""]*len(input_list), "Explanation":[""]*len(input_list)}
    # Format is: {<op-name>:{output:[{associated-item:{...}}], explanation:{tested-features:{...}}}}
    haserr = False
    
    try:
        # Process output for each op type
        for opname,opdata in indata.items():
            # Process output for each input
            for response in opdata:
                # Process the output and explanation
                if "explanation" not in response or "output" not in response:
                    continue
                ss_ind = input_list.index(response["explanation"]["tested-features"]["member-data"]["sign-symptom"][0])
                outdata["Explanation"][ss_ind] = json.dumps(response["explanation"]["tested-features"]["member-data"])
                outdata["Output"][ss_ind] = json.dumps(response["output"][0]["associated-item"])
    except Exception as e:
        print("ERROR in LogicDemo json_to_output_df(): "+str(e))
        haserr = True

    if haserr:
        retval = pd.DataFrame()
    else:
        retval = pd.DataFrame(data=outdata)
    
    print(retval)
    return retval


# Initialize the session
if "agent" not in st.session_state:
    my.init()

## SET UP STREAMLIT PAGE
# emojis: https://www.webfx.com/tools/emoji-cheat-sheet/
st.set_page_config(page_title="🧠CRL Demo", layout="wide")
st.subheader("Cognitive Reasoner Lite Demo")
st.title("Generalized Rule Logic")
st.markdown("**Demonstrates teaching the agent a single rule that lets it respond to many inputs.**")


## Define S/S and intervention concepts
ss_list = [
    "Decreased Bowel Sounds",
    "Difficulty Providing Preventive and Therapeutic Health Care",
    "Limited Recall of Long Past Events",
    "Infection",
    "Heartburn/Belching/Indigestion",
    "Electrolyte Imbalance",
    "Difficulty Expressing Grief Responses",
    "Absent/Abnormal Response To Sound",
    "Minimal Shared Activities"
]
intvn_list = [
    ("Teaching, Guidance, and Counseling","Anatomy/Physiology","bowel function"),
    ("Case Management","Other Community Resources","long term care options"),
    ("Teaching, Guidance, and Counseling","Continuity of Care","simplified routine"),
    ("Teaching, Guidance, and Counseling","Wellness","prevention of infection/sepsis"),
    ("Surveillance","Signs/Symptoms-Physical","epigastric / heartburn pain or discomfort"),
    ("Surveillance","Signs/Symptoms-Physical","intake and output"),
    ("Case Management","Support Group","age/cultural/condition-specific groups"),
    ("Teaching, Guidance, and Counseling","Signs/Symptoms-Physical","increased hearing loss/other changes"),
    ("Teaching, Guidance, and Counseling","Behavioral Health Care","therapy to strengthen family support systems"),
]

# Reset the agent before defining and linking concepts
agent_config = my.make_agent()

# Allow the user to choose how to map S/Ss to Interventions
st.header("Training:")
st.subheader("How do you want the agent to map symptoms to interventions?")

map_xpnd = st.expander(label="Mappings",expanded=True)

row = map_xpnd.container()
map_col1, map_col2 = row.columns(2)
map_col1.subheader("Symptom")
map_col2.subheader("Intervention")
intvn_labels = [short_cg(cg)+"; "+tg+"; "+cd for (cg, tg, cd) in intvn_list]
# cd_list = [list(t) for t in zip(*intvn_list)][-1]   # Transpose the list of tuples and convert to a list and get just the last list
for ind,ss in enumerate(ss_list):
    row = map_xpnd.container()
    map_col1, map_col2 = row.columns(2)
    map_col1.text(ss)
    intvn_select = map_col2.selectbox(label="Maps to Intervention:",options=range(len(intvn_labels)),index=ind, key="mapbox-"+str(ind), format_func=lambda x: intvn_labels[x])
    # Tell the agent to associate this S/S with this intvn
    ss_concept = st.session_state.agent.getConcept("{'member-data':{'sign-symptom':'"+ss+"'}}")
    cg,tg,cd = intvn_list[intvn_select]
    intvn_concept = st.session_state.agent.getConcept("{'intervention':{'category':'"+cg+"','target':'"+tg+"','care-descriptor':'"+cd+"'}}")
    st.session_state.agent.linkConcepts(agent_config.decisionTypeId, "SS-INTVN", ss_concept, intvn_concept)

st.subheader("What do you want the agent to report?")
select_report_attr = st.selectbox(label="Intervention element", options=["Category","Target","Care Descriptor", "All"], index=1)
report_attr = {"Category":"category", "Target":"target", "Care Descriptor":"care-descriptor", "All":""}[select_report_attr]

# Define action behavior to report result (triggered as soon as the intervention concept is active in WM)
# Report just the active 'target-id' elements of the intervention associated with the matched condition
intvn_conc = st.session_state.agent.getConcept("{'intervention':null}")
st.session_state.agent.trainAction(agent_config, intvn_conc, my.ReportActiveConceptActionInList("associated-item", report_attr))

st.markdown("---")
st.header("Input:")
st.subheader("Choose a request to send to the agent.")

ss_input_select_list = [st.selectbox(label="Signs/Symptom:", options=ss_list, index=i, key="ss_in-"+str(i)) for i in range(st.session_state.ld_num_ss_inputs)]
in_col1, in_col2 = st.columns(16)[0:2]
in_col1.button(label="+", on_click=increment_ss_inputs)
in_col2.button(label="–", on_click=decrement_ss_inputs) # em: —, en: –


# Send a partial pattern to the agent's input
st.session_state.agent.clearInput()
for select in ss_input_select_list:
    st.session_state.agent.addInput("{'member-data':{'sign-symptom':'"+select+"'}}")


st.markdown("---")
st.header("Agent Output:")
# Show the input to the user
io_col1, io_col2 = st.columns(2)
io_col1.text("Input sent to agent:")
io_col1.dataframe(data={'Signs/Symptoms':ss_input_select_list})
io_col1.text_area(label="Raw JSON Input", value=st.session_state.agent.getInputAsJsonString(), height=200)

# Run the agent with the given input to get a corresponding memory
st.session_state.agent.setMaxOpCycles(-1)
st.session_state.agent.queryDecision(agent_config.decisionTypeId, 5)

output = st.session_state.agent.getOutputAsJsonString()
query_time_ms = st.session_state.agent.getLastQueryTime()/1000000.0
io_col2.text("Agent Response: ("+str(query_time_ms)+" ms)")
io_col2.dataframe(data=json_to_output_df(output, ss_input_select_list),)
io_col2.text_area(label="Raw JSON Output:",value=output, height=500)