Steph1949 commited on
Commit
9346450
1 Parent(s): 012dff0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -17
app.py CHANGED
@@ -1,38 +1,31 @@
1
  import gradio as gr
2
  import torch
3
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
 
4
 
5
  # Load Whisper model and processor from Hugging Face
6
  processor = WhisperProcessor.from_pretrained("openai/whisper-base")
7
  model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to("cuda" if torch.cuda.is_available() else "cpu")
8
 
9
- def transcribe(audio):
10
  try:
11
- # Load audio
12
- audio_input = processor(audio, sampling_rate=16000, return_tensors="pt")
 
 
 
13
 
14
  # Move to appropriate device
15
- audio_input = audio_input.input_features.to(model.device)
16
-
17
  # Generate transcription
18
- predicted_ids = model.generate(audio_input)
19
  transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
20
 
21
  return transcription
22
  except Exception as e:
23
  return f"Error: {str(e)}"
24
 
25
- def convert_to_wav(audio_file_path):
26
- try:
27
- wav_file_path = os.path.splitext(audio_file_path)[0] + '.wav'
28
- audio = AudioSegment.from_file(audio_file_path)
29
- audio.export(wav_file_path, format='wav')
30
- logging.info(f'Converted {audio_file_path} to {wav_file_path}')
31
- return wav_file_path
32
- except Exception as e:
33
- logging.error(f'Error converting file to WAV: {e}')
34
- raise
35
-
36
  # Create a Gradio interface
37
  iface = gr.Interface(
38
  fn=transcribe,
 
1
  import gradio as gr
2
  import torch
3
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
4
+ import soundfile as sf
5
 
6
  # Load Whisper model and processor from Hugging Face
7
  processor = WhisperProcessor.from_pretrained("openai/whisper-base")
8
  model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to("cuda" if torch.cuda.is_available() else "cpu")
9
 
10
+ def transcribe(audio_path):
11
  try:
12
+ # Read audio file
13
+ audio, sampling_rate = sf.read(audio_path)
14
+
15
+ # Process audio
16
+ inputs = processor(audio, sampling_rate=sampling_rate, return_tensors="pt").input_features
17
 
18
  # Move to appropriate device
19
+ inputs = inputs.to(model.device)
20
+
21
  # Generate transcription
22
+ predicted_ids = model.generate(inputs)
23
  transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
24
 
25
  return transcription
26
  except Exception as e:
27
  return f"Error: {str(e)}"
28
 
 
 
 
 
 
 
 
 
 
 
 
29
  # Create a Gradio interface
30
  iface = gr.Interface(
31
  fn=transcribe,