SteveDigital
commited on
Commit
•
fe55d4b
1
Parent(s):
4d713e7
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import whisper
|
2 |
from pytube import YouTube
|
3 |
-
from transformers import pipeline
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
import re
|
7 |
|
8 |
model = whisper.load_model("large")
|
9 |
-
summarizer = pipeline("summarization")
|
10 |
|
11 |
def get_audio(url):
|
12 |
try:
|
@@ -45,7 +45,8 @@ def get_summary(article):
|
|
45 |
|
46 |
with gr.Blocks() as demo:
|
47 |
gr.Markdown("<h1><center>Free Fast YouTube URL Video-to-Text using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a> Model</center></h1>")
|
48 |
-
gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>")
|
|
|
49 |
gr.Markdown("<center><b>'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'</b></center>")
|
50 |
gr.Markdown("<center>Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience<br />If you have time while waiting, check out my <a href=https://www.artificial-intelligence.blog target=_blank>AI blog</a> (opens in new tab).</center>")
|
51 |
|
@@ -53,10 +54,10 @@ with gr.Blocks() as demo:
|
|
53 |
result_button_transcribe = gr.Button('1. Transcribe')
|
54 |
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
|
55 |
|
56 |
-
result_button_summary = gr.Button('2. Create Summary')
|
57 |
-
output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary')
|
58 |
|
59 |
result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe)
|
60 |
-
result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary)
|
61 |
|
62 |
demo.queue(default_enabled = True).launch(debug = True)
|
|
|
1 |
import whisper
|
2 |
from pytube import YouTube
|
3 |
+
#from transformers import pipeline
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
import re
|
7 |
|
8 |
model = whisper.load_model("large")
|
9 |
+
#summarizer = pipeline("summarization")
|
10 |
|
11 |
def get_audio(url):
|
12 |
try:
|
|
|
45 |
|
46 |
with gr.Blocks() as demo:
|
47 |
gr.Markdown("<h1><center>Free Fast YouTube URL Video-to-Text using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a> Model</center></h1>")
|
48 |
+
#gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>")
|
49 |
+
gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video.</center>")
|
50 |
gr.Markdown("<center><b>'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'</b></center>")
|
51 |
gr.Markdown("<center>Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience<br />If you have time while waiting, check out my <a href=https://www.artificial-intelligence.blog target=_blank>AI blog</a> (opens in new tab).</center>")
|
52 |
|
|
|
54 |
result_button_transcribe = gr.Button('1. Transcribe')
|
55 |
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
|
56 |
|
57 |
+
#result_button_summary = gr.Button('2. Create Summary')
|
58 |
+
#output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary')
|
59 |
|
60 |
result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe)
|
61 |
+
#result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary)
|
62 |
|
63 |
demo.queue(default_enabled = True).launch(debug = True)
|