Spaces:
Running
Running
RomanShnurov
commited on
Commit
•
f3b2c5b
1
Parent(s):
295487b
add new synthetic detector
Browse files- .gitignore +160 -0
- app.py +32 -82
- model_classes.py +51 -0
- model_loader.py +59 -0
- model_transforms.py +25 -0
- models/synthetic_detector_v2.pt +3 -0
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
app.py
CHANGED
@@ -1,93 +1,40 @@
|
|
1 |
-
import os
|
2 |
-
os.system("python -m pip install --upgrade pip")
|
3 |
-
os.system("pip install git+https://github.com/rwightman/pytorch-image-models")
|
4 |
-
os.system("pip install git+https://github.com/huggingface/huggingface_hub")
|
5 |
-
|
6 |
import gradio as gr
|
7 |
-
import timm
|
8 |
-
import torch
|
9 |
-
from torch import nn
|
10 |
from torch.nn import functional as F
|
11 |
-
import torchvision
|
12 |
-
|
13 |
-
|
14 |
-
class Model200M(torch.nn.Module):
|
15 |
-
def __init__(self):
|
16 |
-
super().__init__()
|
17 |
-
self.model = timm.create_model('convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384', pretrained=False,
|
18 |
-
num_classes=0)
|
19 |
-
|
20 |
-
self.clf = nn.Sequential(
|
21 |
-
nn.Linear(1536, 128),
|
22 |
-
nn.ReLU(inplace=True),
|
23 |
-
nn.Linear(128, 2))
|
24 |
-
|
25 |
-
def forward(self, image):
|
26 |
-
image_features = self.model(image)
|
27 |
-
return self.clf(image_features)
|
28 |
-
|
29 |
-
|
30 |
-
class Model5M(torch.nn.Module):
|
31 |
-
def __init__(self):
|
32 |
-
super().__init__()
|
33 |
-
self.model = timm.create_model('timm/tf_mobilenetv3_large_100.in1k', pretrained=False, num_classes=0)
|
34 |
-
|
35 |
-
self.clf = nn.Sequential(
|
36 |
-
nn.Linear(1280, 128),
|
37 |
-
nn.ReLU(inplace=True),
|
38 |
-
nn.Linear(128, 2))
|
39 |
-
|
40 |
-
def forward(self, image):
|
41 |
-
image_features = self.model(image)
|
42 |
-
return self.clf(image_features)
|
43 |
-
|
44 |
-
def load_model(name: str):
|
45 |
-
model = Model200M() if "200M" in name else Model5M()
|
46 |
-
ckpt = torch.load(name, map_location=torch.device('cpu'))
|
47 |
-
model.load_state_dict(ckpt)
|
48 |
-
model.eval()
|
49 |
-
return model
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
std=[0.229, 0.224, 0.225]),
|
63 |
-
])
|
64 |
-
|
65 |
-
tfm_small = torchvision.transforms.Compose([
|
66 |
-
torchvision.transforms.Resize((224, 224)),
|
67 |
-
torchvision.transforms.ToTensor(),
|
68 |
-
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
69 |
-
std=[0.229, 0.224, 0.225]),
|
70 |
-
])
|
71 |
-
|
72 |
-
|
73 |
-
def predict_from_model(model, img_1):
|
74 |
-
y = model.forward(img_1[None, ...])
|
75 |
y_1 = F.softmax(y, dim=1)[:, 1].cpu().detach().numpy()
|
76 |
y_2 = F.softmax(y, dim=1)[:, 0].cpu().detach().numpy()
|
77 |
return {'created by AI': y_1.tolist(),
|
78 |
'created by human': y_2.tolist()}
|
79 |
|
|
|
|
|
|
|
|
|
80 |
|
81 |
def predict(raw_image, model_name):
|
82 |
-
|
83 |
-
img_2 = tfm_small(raw_image)
|
84 |
-
|
85 |
-
if model_name not in model_list:
|
86 |
return {'error': [0.]}
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
general_examples = [
|
93 |
["images/general/img_1.jpg"],
|
@@ -125,8 +72,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
125 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_200'>midjourney200M</a>,
|
126 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_5'>midjourney5M</a>,
|
127 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_200'>diffusions200M</a>,
|
128 |
-
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_5'>diffusions5M</a
|
129 |
-
|
|
|
130 |
Please refer to model cards for evaluation metrics and limitations.
|
131 |
"""
|
132 |
)
|
@@ -134,7 +82,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
image_input = gr.Image(type="pil")
|
137 |
-
drop_down = gr.Dropdown(
|
138 |
with gr.Row():
|
139 |
gr.ClearButton(components=[image_input])
|
140 |
submit_button = gr.Button("Submit", variant="primary")
|
@@ -154,12 +102,14 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
154 |
<h3>Models</h3>
|
155 |
<p><code>*_200M</code> models are based on <code>convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384</code> with image size <code>640x640</code></p>
|
156 |
<p><code>*_5M</code> models are based on <code>tf_mobilenetv3_large_100.in1k</code> with image size <code>224x224</code></p>
|
|
|
157 |
|
158 |
<h3>Details</h3>
|
159 |
<li>Model cards: <a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_200'>midjourney200M</a>,
|
160 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_5'>midjourney5M</a>,
|
161 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_200'>diffusions200M</a>,
|
162 |
-
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_5'>diffusions5M</a
|
|
|
163 |
</li>
|
164 |
<li>License: CC-By-SA-3.0</li>
|
165 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from torch.nn import functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
from model_loader import ModelType, type_to_transforms, type_to_loaded_model
|
5 |
+
|
6 |
+
def predict_from_model(model_type, raw_image):
|
7 |
+
tfm = type_to_transforms[model_type]
|
8 |
+
model = type_to_loaded_model[model_type]
|
9 |
+
img = tfm(raw_image)
|
10 |
+
y = None
|
11 |
+
if model_type == ModelType.SYNTHETIC_DETECTOR_V2:
|
12 |
+
y = model.forward(img.unsqueeze(0).to("cpu"))
|
13 |
+
else:
|
14 |
+
y = model.forward(img[None, ...])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
y_1 = F.softmax(y, dim=1)[:, 1].cpu().detach().numpy()
|
16 |
y_2 = F.softmax(y, dim=1)[:, 0].cpu().detach().numpy()
|
17 |
return {'created by AI': y_1.tolist(),
|
18 |
'created by human': y_2.tolist()}
|
19 |
|
20 |
+
def get_y(model_type, model, image):
|
21 |
+
if model_type == ModelType.SYNTHETIC_DETECTOR_V2:
|
22 |
+
return model.forward(image.unsqueeze(0).to("cpu"))
|
23 |
+
return model.forward(image[None, ...])
|
24 |
|
25 |
def predict(raw_image, model_name):
|
26 |
+
if model_name not in ModelType.get_list():
|
|
|
|
|
|
|
27 |
return {'error': [0.]}
|
28 |
|
29 |
+
model_type = ModelType[str(model_name).upper()].value
|
30 |
+
model = type_to_loaded_model[model_type]
|
31 |
+
tfm = type_to_transforms[model_type]
|
32 |
+
image = tfm(raw_image)
|
33 |
+
y = get_y(model_type, model, image)
|
34 |
+
y_1 = F.softmax(y, dim=1)[:, 1].cpu().detach().numpy()
|
35 |
+
y_2 = F.softmax(y, dim=1)[:, 0].cpu().detach().numpy()
|
36 |
+
return {'created by AI': y_1.tolist(),
|
37 |
+
'created by human': y_2.tolist()}
|
38 |
|
39 |
general_examples = [
|
40 |
["images/general/img_1.jpg"],
|
|
|
72 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_200'>midjourney200M</a>,
|
73 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_5'>midjourney5M</a>,
|
74 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_200'>diffusions200M</a>,
|
75 |
+
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_5'>diffusions5M</a>,
|
76 |
+
<a href=''>synthetic_detector_v2</a>.
|
77 |
+
<br>We provide several detectors for images generated by popular tools, such as Midjourney and Stable Diffusion.<br>
|
78 |
Please refer to model cards for evaluation metrics and limitations.
|
79 |
"""
|
80 |
)
|
|
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
image_input = gr.Image(type="pil")
|
85 |
+
drop_down = gr.Dropdown(ModelType.get_list(), type="value", label="Model", value=ModelType.SYNTHETIC_DETECTOR_V2)
|
86 |
with gr.Row():
|
87 |
gr.ClearButton(components=[image_input])
|
88 |
submit_button = gr.Button("Submit", variant="primary")
|
|
|
102 |
<h3>Models</h3>
|
103 |
<p><code>*_200M</code> models are based on <code>convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384</code> with image size <code>640x640</code></p>
|
104 |
<p><code>*_5M</code> models are based on <code>tf_mobilenetv3_large_100.in1k</code> with image size <code>224x224</code></p>
|
105 |
+
<p><code>synthetic_detector_2.0</code> models are based on <code>convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384</code> with image size <code>384x384</code></p>
|
106 |
|
107 |
<h3>Details</h3>
|
108 |
<li>Model cards: <a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_200'>midjourney200M</a>,
|
109 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_mj_5'>midjourney5M</a>,
|
110 |
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_200'>diffusions200M</a>,
|
111 |
+
<a href='https://huggingface.co/Sumsub/Sumsub-ffs-synthetic-1.0_sd_5'>diffusions5M</a>,
|
112 |
+
<a href=''>synthetic_detector_v2</a>.
|
113 |
</li>
|
114 |
<li>License: CC-By-SA-3.0</li>
|
115 |
"""
|
model_classes.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
from pytorch_lightning.core.mixins import HyperparametersMixin
|
6 |
+
|
7 |
+
class Model200M(torch.nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super().__init__()
|
10 |
+
self.model = timm.create_model('convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384', pretrained=False,
|
11 |
+
num_classes=0)
|
12 |
+
|
13 |
+
self.clf = nn.Sequential(
|
14 |
+
nn.Linear(1536, 128),
|
15 |
+
nn.ReLU(inplace=True),
|
16 |
+
nn.Linear(128, 2))
|
17 |
+
|
18 |
+
def forward(self, image):
|
19 |
+
image_features = self.model(image)
|
20 |
+
return self.clf(image_features)
|
21 |
+
|
22 |
+
|
23 |
+
class Model5M(torch.nn.Module):
|
24 |
+
def __init__(self):
|
25 |
+
super().__init__()
|
26 |
+
self.model = timm.create_model('timm/tf_mobilenetv3_large_100.in1k', pretrained=False, num_classes=0)
|
27 |
+
|
28 |
+
self.clf = nn.Sequential(
|
29 |
+
nn.Linear(1280, 128),
|
30 |
+
nn.ReLU(inplace=True),
|
31 |
+
nn.Linear(128, 2))
|
32 |
+
|
33 |
+
def forward(self, image):
|
34 |
+
image_features = self.model(image)
|
35 |
+
return self.clf(image_features)
|
36 |
+
|
37 |
+
|
38 |
+
class SyntheticV2(pl.LightningModule, HyperparametersMixin):
|
39 |
+
def __init__(self):
|
40 |
+
super().__init__()
|
41 |
+
self.model = timm.create_model('convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384', pretrained=False,
|
42 |
+
num_classes=0)
|
43 |
+
|
44 |
+
self.clf = nn.Sequential(
|
45 |
+
nn.Linear(1536, 128),
|
46 |
+
nn.ReLU(inplace=True),
|
47 |
+
nn.Linear(128, 2))
|
48 |
+
|
49 |
+
def forward(self, image):
|
50 |
+
image_features = self.model(image)
|
51 |
+
return self.clf(image_features)
|
model_loader.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from model_classes import Model200M, Model5M, SyntheticV2
|
5 |
+
from model_transforms import transform_200M, transform_5M, transform_synthetic
|
6 |
+
|
7 |
+
class ModelType(str, Enum):
|
8 |
+
MIDJOURNEY_200M = "midjourney_200M"
|
9 |
+
DIFFUSIONS_200M = "diffusions_200M"
|
10 |
+
MIDJOURNEY_5M = "midjourney_5M"
|
11 |
+
DIFFUSIONS_5M = "diffusions_5M"
|
12 |
+
SYNTHETIC_DETECTOR_V2 = "synthetic_detector_v2"
|
13 |
+
|
14 |
+
def __str__(self):
|
15 |
+
return str(self.value)
|
16 |
+
|
17 |
+
@staticmethod
|
18 |
+
def get_list():
|
19 |
+
return [model_type.value for model_type in ModelType]
|
20 |
+
|
21 |
+
def load_model(value: ModelType):
|
22 |
+
model = type_to_class[value]
|
23 |
+
path = type_to_path[value]
|
24 |
+
ckpt = torch.load(path, map_location=torch.device('cpu'))
|
25 |
+
model.load_state_dict(ckpt)
|
26 |
+
model.eval()
|
27 |
+
return model
|
28 |
+
|
29 |
+
type_to_class = {
|
30 |
+
ModelType.MIDJOURNEY_200M : Model200M(),
|
31 |
+
ModelType.DIFFUSIONS_200M : Model200M(),
|
32 |
+
ModelType.MIDJOURNEY_5M : Model5M(),
|
33 |
+
ModelType.DIFFUSIONS_5M : Model5M(),
|
34 |
+
ModelType.SYNTHETIC_DETECTOR_V2 : SyntheticV2(),
|
35 |
+
}
|
36 |
+
|
37 |
+
type_to_path = {
|
38 |
+
ModelType.MIDJOURNEY_200M : 'models/midjourney200M.pt',
|
39 |
+
ModelType.DIFFUSIONS_200M : 'models/diffusions200M.pt',
|
40 |
+
ModelType.MIDJOURNEY_5M : 'models/midjourney5M.pt',
|
41 |
+
ModelType.DIFFUSIONS_5M : 'models/diffusions5M.pt',
|
42 |
+
ModelType.SYNTHETIC_DETECTOR_V2 : 'models/synthetic_detector_v2.pt',
|
43 |
+
}
|
44 |
+
|
45 |
+
type_to_loaded_model = {
|
46 |
+
ModelType.MIDJOURNEY_200M: load_model(ModelType.MIDJOURNEY_200M),
|
47 |
+
ModelType.DIFFUSIONS_200M: load_model(ModelType.DIFFUSIONS_200M),
|
48 |
+
ModelType.MIDJOURNEY_5M: load_model(ModelType.MIDJOURNEY_5M),
|
49 |
+
ModelType.DIFFUSIONS_5M: load_model(ModelType.DIFFUSIONS_5M),
|
50 |
+
ModelType.SYNTHETIC_DETECTOR_V2: load_model(ModelType.SYNTHETIC_DETECTOR_V2)
|
51 |
+
}
|
52 |
+
|
53 |
+
type_to_transforms = {
|
54 |
+
ModelType.MIDJOURNEY_200M: transform_200M,
|
55 |
+
ModelType.DIFFUSIONS_200M: transform_200M,
|
56 |
+
ModelType.MIDJOURNEY_5M: transform_5M,
|
57 |
+
ModelType.DIFFUSIONS_5M: transform_5M,
|
58 |
+
ModelType.SYNTHETIC_DETECTOR_V2: transform_synthetic
|
59 |
+
}
|
model_transforms.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
data_config = {'input_size': (3, 384, 384),
|
5 |
+
'interpolation': 'bicubic',
|
6 |
+
'mean': (0.48145466, 0.4578275, 0.40821073),
|
7 |
+
'std': (0.26862954, 0.26130258, 0.27577711),
|
8 |
+
'crop_pct': 1.0,
|
9 |
+
'crop_mode': 'squash'}
|
10 |
+
|
11 |
+
transform_synthetic = timm.data.create_transform(**data_config, is_training=False)
|
12 |
+
|
13 |
+
transform_200M = torchvision.transforms.Compose([
|
14 |
+
torchvision.transforms.Resize((640, 640)),
|
15 |
+
torchvision.transforms.ToTensor(),
|
16 |
+
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
17 |
+
std=[0.229, 0.224, 0.225]),
|
18 |
+
])
|
19 |
+
|
20 |
+
transform_5M = torchvision.transforms.Compose([
|
21 |
+
torchvision.transforms.Resize((224, 224)),
|
22 |
+
torchvision.transforms.ToTensor(),
|
23 |
+
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
24 |
+
std=[0.229, 0.224, 0.225]),
|
25 |
+
])
|
models/synthetic_detector_v2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89a955ec54bddab759228757e437d300b6b86bbba9f45cfd5ecd0e3d7dec83a2
|
3 |
+
size 795263437
|