import timm import torchvision data_config = {'input_size': (3, 384, 384), 'interpolation': 'bicubic', 'mean': (0.48145466, 0.4578275, 0.40821073), 'std': (0.26862954, 0.26130258, 0.27577711), 'crop_pct': 1.0, 'crop_mode': 'squash'} transform_synthetic = timm.data.create_transform(**data_config, is_training=False) transform_200M = torchvision.transforms.Compose([ torchvision.transforms.Resize((640, 640)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_5M = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])