|
|
|
import glob, os, sys; |
|
sys.path.append('../utils') |
|
|
|
|
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
from utils.vulnerability_classifier import load_vulnerabilityClassifier, vulnerability_classification |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
from utils.config import get_classifier_params |
|
from utils.preprocessing import paraLengthCheck |
|
from io import BytesIO |
|
import xlsxwriter |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
from utils.vulnerability_classifier import label_dict |
|
|
|
|
|
|
|
|
|
classifier_identifier = 'vulnerability' |
|
params = get_classifier_params(classifier_identifier) |
|
|
|
@st.cache_data |
|
def to_excel(df,sectorlist): |
|
len_df = len(df) |
|
output = BytesIO() |
|
writer = pd.ExcelWriter(output, engine='xlsxwriter') |
|
df.to_excel(writer, index=False, sheet_name='Sheet1') |
|
workbook = writer.book |
|
worksheet = writer.sheets['Sheet1'] |
|
worksheet.data_validation('S2:S{}'.format(len_df), |
|
{'validate': 'list', |
|
'source': ['No', 'Yes', 'Discard']}) |
|
worksheet.data_validation('X2:X{}'.format(len_df), |
|
{'validate': 'list', |
|
'source': sectorlist + ['Blank']}) |
|
worksheet.data_validation('T2:T{}'.format(len_df), |
|
{'validate': 'list', |
|
'source': sectorlist + ['Blank']}) |
|
worksheet.data_validation('U2:U{}'.format(len_df), |
|
{'validate': 'list', |
|
'source': sectorlist + ['Blank']}) |
|
worksheet.data_validation('V2:V{}'.format(len_df), |
|
{'validate': 'list', |
|
'source': sectorlist + ['Blank']}) |
|
worksheet.data_validation('W2:U{}'.format(len_df), |
|
{'validate': 'list', |
|
'source': sectorlist + ['Blank']}) |
|
writer.save() |
|
processed_data = output.getvalue() |
|
return processed_data |
|
|
|
def app(): |
|
|
|
|
|
with st.container(): |
|
|
|
|
|
if 'key0' in st.session_state: |
|
|
|
|
|
df = st.session_state.key0 |
|
classifier = load_vulnerabilityClassifier(classifier_name=params['model_name']) |
|
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier |
|
|
|
|
|
|
|
df = vulnerability_classification(haystack_doc=df, |
|
threshold= params['threshold']) |
|
|
|
|
|
|
|
st.session_state.key1 = df |
|
|
|
|
|
def vulnerability_display(): |
|
|
|
|
|
df = st.session_state['key1'] |
|
|
|
|
|
df_filtered = df[df['Vulnerability Label'].apply(lambda x: len(x) > 0 and 'Other' not in x)] |
|
|
|
|
|
df_filtered.rename(columns={'Vulnerability Label': 'Group(s)'}, inplace=True) |
|
|
|
|
|
st.subheader("Explore references to vulnerable groups:") |
|
|
|
|
|
|
|
num_paragraphs = len(df['Vulnerability Label']) |
|
num_references = len(df_filtered['Group(s)']) |
|
|
|
st.markdown(f"""<div style="text-align: justify;">The document contains a |
|
total of <span style="color: red;">{num_paragraphs}</span> paragraphs. |
|
We identified <span style="color: red;">{num_references}</span> |
|
references to groups in vulnerable situations.</div> |
|
<br> |
|
<div style="text-align: justify;">We are searching for references related |
|
to the following groups: (1) Agricultural communities, (2) Children, (3) |
|
Ethnic, racial and other minorities, (4) Fishery communities, (5) Informal sector |
|
workers, (6) Members of indigenous and local communities, (7) Migrants and |
|
displaced persons, (8) Older persons, (9) Persons living in poverty, (10) |
|
Persons living with disabilities, (11) Persons with pre-existing health conditions, |
|
(12) Residents of drought-prone regions, (13) Rural populations, (14) Sexual |
|
minorities (LGBTQI+), (15) Urban populations, (16) Women and other genders.</div> |
|
<br> |
|
<div style="text-align: justify;">The chart below shows the groups for which |
|
references were found and the number of references identified. |
|
For a more detailed view in the text, see the paragraphs and |
|
their respective labels in the table underneath.</div>""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
|
|
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label']) |
|
|
|
|
|
group_counts = {} |
|
|
|
|
|
for index, row in df_filtered.iterrows(): |
|
|
|
|
|
for sublist in row['Group(s)']: |
|
|
|
|
|
group_counts[sublist] = group_counts.get(sublist, 0) + 1 |
|
|
|
|
|
df_label_count = pd.DataFrame(list(group_counts.items()), columns=['Label', 'Count']) |
|
|
|
|
|
df_label_count = df_labels.merge(df_label_count, on='Label', how='left') |
|
|
|
|
|
df_bar_chart = df_label_count[df_label_count['Label'] != 'Other'] |
|
df_bar_chart = df_bar_chart.dropna(subset=['Count']) |
|
|
|
|
|
|
|
fig = go.Figure() |
|
|
|
fig.add_trace(go.Bar( |
|
y=df_bar_chart.Label, |
|
x=df_bar_chart.Count, |
|
orientation='h', |
|
marker=dict(color='purple'), |
|
)) |
|
|
|
|
|
fig.update_layout( |
|
title='Number of references identified', |
|
xaxis_title='Number of references', |
|
yaxis_title='Group', |
|
) |
|
|
|
|
|
|
|
|
|
|
|
st.plotly_chart(fig, use_container_width=True) |