Update app.py
Browse files
app.py
CHANGED
@@ -138,67 +138,71 @@ if st.button("Analyze Document"):
|
|
138 |
|
139 |
# If there is data stored
|
140 |
if 'key0' in st.session_state:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
# Assign dataframe a name
|
149 |
-
df_vul = st.session_state['key0']
|
150 |
-
|
151 |
-
col1, col2 = st.columns([1,1])
|
152 |
-
|
153 |
-
with col1:
|
154 |
-
# Header
|
155 |
-
st.subheader("Explore references to vulnerable groups:")
|
156 |
-
|
157 |
-
# Text
|
158 |
-
num_paragraphs = len(df_vul['Vulnerability Label'])
|
159 |
-
num_references = len(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|
160 |
-
|
161 |
-
st.markdown(f"""<div style="text-align: justify;"> The document contains a
|
162 |
-
total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
|
163 |
-
We identified <span style="color: red;">{num_references}</span>
|
164 |
-
references to vulnerable groups.</div>
|
165 |
-
<br>
|
166 |
-
In the pie chart on the right you can see the distribution of the different
|
167 |
-
groups defined. For a more detailed view in the text, see the paragraphs and
|
168 |
-
their respective labels in the table below.</div>""", unsafe_allow_html=True)
|
169 |
-
|
170 |
-
with col2:
|
171 |
-
|
172 |
-
### Pie chart
|
173 |
-
|
174 |
-
# Create a df that stores all the labels
|
175 |
-
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
|
176 |
-
|
177 |
-
# Count how often each label appears in the "Vulnerability Labels" column
|
178 |
-
label_counts = df_vul['Vulnerability Label'].value_counts().reset_index()
|
179 |
-
label_counts.columns = ['Label', 'Count']
|
180 |
-
|
181 |
-
# Merge the label counts with the df_label DataFrame
|
182 |
-
df_labels = df_labels.merge(label_counts, on='Label', how='left')
|
183 |
-
|
184 |
-
# Configure graph
|
185 |
-
fig = px.pie(df_labels,
|
186 |
-
names="Label",
|
187 |
-
values="Count",
|
188 |
-
title='Label Counts',
|
189 |
-
hover_name="Count",
|
190 |
-
color_discrete_sequence=px.colors.qualitative.Plotly
|
191 |
-
)
|
192 |
-
|
193 |
-
#Show plot
|
194 |
-
st.plotly_chart(fig, use_container_width=True)
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
# If there is data stored
|
140 |
if 'key0' in st.session_state:
|
141 |
+
|
142 |
+
###################################################################
|
143 |
+
|
144 |
+
#with st.sidebar:
|
145 |
+
# topic = st.radio(
|
146 |
+
# "Which category you want to explore?",
|
147 |
+
# (['Vulnerability', 'Concrete targets/actions/measures']))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
#if topic == 'Vulnerability':
|
150 |
+
|
151 |
+
# Assign dataframe a name
|
152 |
+
df_vul = st.session_state['key0']
|
153 |
+
|
154 |
+
col1, col2 = st.columns([1,1])
|
155 |
+
|
156 |
+
with col1:
|
157 |
+
|
158 |
+
# Header
|
159 |
+
st.subheader("Explore references to vulnerable groups:")
|
160 |
+
|
161 |
+
# Text
|
162 |
+
num_paragraphs = len(df_vul['Vulnerability Label'])
|
163 |
+
num_references = len(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|
164 |
+
|
165 |
+
st.markdown(f"""<div style="text-align: justify;"> The document contains a
|
166 |
+
total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
|
167 |
+
We identified <span style="color: red;">{num_references}</span>
|
168 |
+
references to vulnerable groups.</div>
|
169 |
+
<br>
|
170 |
+
In the pie chart on the right you can see the distribution of the different
|
171 |
+
groups defined. For a more detailed view in the text, see the paragraphs and
|
172 |
+
their respective labels in the table below.</div>""", unsafe_allow_html=True)
|
173 |
+
|
174 |
+
with col2:
|
175 |
+
|
176 |
+
### Pie chart
|
177 |
+
|
178 |
+
# Create a df that stores all the labels
|
179 |
+
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
|
180 |
+
|
181 |
+
# Count how often each label appears in the "Vulnerability Labels" column
|
182 |
+
label_counts = df_vul['Vulnerability Label'].value_counts().reset_index()
|
183 |
+
label_counts.columns = ['Label', 'Count']
|
184 |
+
|
185 |
+
# Merge the label counts with the df_label DataFrame
|
186 |
+
df_labels = df_labels.merge(label_counts, on='Label', how='left')
|
187 |
+
|
188 |
+
# Configure graph
|
189 |
+
fig = px.pie(df_labels,
|
190 |
+
names="Label",
|
191 |
+
values="Count",
|
192 |
+
title='Label Counts',
|
193 |
+
hover_name="Count",
|
194 |
+
color_discrete_sequence=px.colors.qualitative.Plotly
|
195 |
+
)
|
196 |
+
|
197 |
+
#Show plot
|
198 |
+
st.plotly_chart(fig, use_container_width=True)
|
199 |
+
|
200 |
+
### Table
|
201 |
+
st.table(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|
202 |
+
|
203 |
+
# vulnerability_analysis.vulnerability_display()
|
204 |
+
# elif topic == 'Action':
|
205 |
+
# policyaction.action_display()
|
206 |
+
# else:
|
207 |
+
# policyaction.policy_display()
|
208 |
+
#st.write(st.session_state.key0)
|