import os import numpy as np import torch from SwinIR.models.network_swinir import SwinIR as net ROOT_PATH = os.path.dirname(__file__) class SwinIRDemo: def __init__(self): self.scale = 4 self.window_size = 8 self.tile = 800 self.tile_overlap = 32 self.device = 'cuda' model_path = os.path.join(ROOT_PATH, 'weight/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth') self.model = self.model_init(model_path) def model_init(self, model_path): model = net(upscale=self.scale, in_chans=3, img_size=64, window_size=8, img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv') param_key_g = 'params_ema' pretrained_model = torch.load(model_path) model.load_state_dict( pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True) model.eval() model = model.to(self.device) return model def img_preprocess(self, img_PIL, device, window_size): # imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32 # img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. # img_lq = img_PIL.convert('BGR') img_lq = np.asarray(img_PIL) img_lq = img_lq / 255 img_lq = np.transpose(img_lq[:, :, [0, 1, 2]], (2, 0, 1)) # HCW-BGR to CHW-RGB img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB # pad input image to be a multiple of window_size _, _, h_old, w_old = img_lq.size() h_pad = (h_old // window_size + 1) * window_size - h_old w_pad = (w_old // window_size + 1) * window_size - w_old img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] return img_lq, h_old, w_old def test(self, img_lq): b, c, h, w = img_lq.size() tile = min(self.tile, h, w) assert tile % self.window_size == 0, "tile size should be a multiple of window_size" sf = self.scale stride = tile - self.tile_overlap h_idx_list = list(range(0, h - tile, stride)) + [h - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile] E = torch.zeros(b, c, h * sf, w * sf).type_as(img_lq) W = torch.zeros_like(E) for h_idx in h_idx_list: for w_idx in w_idx_list: in_patch = img_lq[..., h_idx:h_idx + tile, w_idx:w_idx + tile] out_patch = self.model(in_patch) out_patch_mask = torch.ones_like(out_patch) E[..., h_idx * sf:(h_idx + tile) * sf, w_idx * sf:(w_idx + tile) * sf].add_(out_patch) W[..., h_idx * sf:(h_idx + tile) * sf, w_idx * sf:(w_idx + tile) * sf].add_(out_patch_mask) output = E.div_(W) return output def infer(self, img_lq): img_lq, h_old, w_old = self.img_preprocess(img_lq, self.device, self.window_size) with torch.no_grad(): output = self.test(img_lq) output = output[..., :h_old * self.scale, :w_old * self.scale] output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() if output.ndim == 3: output = np.transpose(output[[0, 1, 2], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR output = (output * 255.0).round().astype(np.uint8) return output