LaVie / interpolation /sample.py
Zhouyan248's picture
Upload 86 files
26555ee
"""
we introduce a temporal interpolation network to enhance the smoothness of generated videos and synthesize richer temporal details.
This network takes a 16-frame base video as input and produces an upsampled output consisting of 61 frames.
"""
import os
import sys
import math
try:
import utils
from diffusion import create_diffusion
from download import find_model
except:
sys.path.append(os.path.split(sys.path[0])[0])
import utils
from diffusion import create_diffusion
from download import find_model
import torch
import argparse
import torchvision
from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from torchvision import transforms
sys.path.append("..")
from datasets import video_transforms
from decord import VideoReader
from utils import mask_generation, mask_generation_before
from natsort import natsorted
from diffusers.utils.import_utils import is_xformers_available
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def get_input(args):
input_path = args.input_path
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(), # TCHW
# video_transforms.CenterCropResizeVideo((args.image_h, args.image_w)),
video_transforms.ResizeVideo((args.image_h, args.image_w)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
if input_path is not None:
print(f'loading video from {input_path}')
if os.path.isdir(input_path):
file_list = os.listdir(input_path)
video_frames = []
for file in file_list:
if file.endswith('jpg') or file.endswith('png'):
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0)
video_frames.append(image)
else:
continue
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
video_frames = transform_video(video_frames)
return video_frames, n
elif os.path.isfile(input_path):
_, full_file_name = os.path.split(input_path)
file_name, extention = os.path.splitext(full_file_name)
if extention == '.mp4':
video_reader = VideoReader(input_path)
total_frames = len(video_reader)
start_frame_ind, end_frame_ind = temporal_sample_func(total_frames)
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int)
video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
video_frames = transform_video(video_frames)
n = 3
del video_reader
return video_frames, n
else:
raise TypeError(f'{extention} is not supported !!')
else:
raise ValueError('Please check your path input!!')
else:
print('given video is None, using text to video')
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
args.mask_type = 'all'
video_frames = transform_video(video_frames)
n = 0
return video_frames, n
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
b,f,c,h,w=video_input.shape
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
masked_video = torch.cat([masked_video] * 2) if args.do_classifier_free_guidance else masked_video
mask = torch.cat([mask] * 2) if args.do_classifier_free_guidance else mask
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None)
if args.use_ddim_sample_loop:
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat
)
else:
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat
) # torch.Size([2, 4, 16, 32, 32])
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
def auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,):
b,f,c,h,w=video_input.shape
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous()
video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215)
video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous()
lr_indice = torch.IntTensor([i for i in range(0,62,4)]).to(device)
copied_video = torch.index_select(video_input, 2, lr_indice)
copied_video = torch.repeat_interleave(copied_video, 4, dim=2)
copied_video = copied_video[:,:,1:-2,:,:]
copied_video = torch.cat([copied_video] * 2) if args.do_classifier_free_guidance else copied_video
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.use_ddim_sample_loop:
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
progress=True, device=device, mask=None, x_start=copied_video, use_concat=args.use_concat, copy_no_mask=args.copy_no_mask,
)
else:
raise ValueError(f'We only have ddim sampling implementation for now')
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
def main(args):
for seed in args.seed_list:
args.seed = seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# print(f'torch.seed() = {torch.seed()}')
print('sampling begins')
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
ckpt_path = args.pretrained_path + "/lavie_interpolation.pt"
sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
for ckpt in [ckpt_path]:
ckpt_num = str(ckpt_path).zfill(7)
# Load model:
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
args.image_h = args.image_size[0]
args.image_w = args.image_size[1]
args.latent_h = latent_h
args.latent_w = latent_w
print(f'args.copy_no_mask = {args.copy_no_mask}')
model = get_models(args, sd_path).to(device)
if args.use_compile:
model = torch.compile(model)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
# model.enable_vae_slicing() # ziqi added
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Auto-download a pre-trained model or load a custom checkpoint from train.py:
print(f'loading model from {ckpt_path}')
# load ckpt
state_dict = find_model(ckpt_path)
print(f'state_dict["conv_in.weight"].shape = {state_dict["conv_in.weight"].shape}') # [320, 8, 3, 3]
print('loading succeed')
# model.load_state_dict(state_dict)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
model.eval() # important!
diffusion = create_diffusion(str(args.num_sampling_steps))
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(device)
text_encoder = TextEmbedder(sd_path).to(device)
video_list = os.listdir(args.input_folder)
args.input_path_list = [os.path.join(args.input_folder, video) for video in video_list]
for input_path in args.input_path_list:
args.input_path = input_path
print(f'=======================================')
if not args.input_path.endswith('.mp4'):
print(f'Skipping {args.input_path}')
continue
print(f'args.input_path = {args.input_path}')
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Labels to condition the model with (feel free to change):
video_name = args.input_path.split('/')[-1].split('.mp4')[0]
args.prompt = [video_name]
print(f'args.prompt = {args.prompt}')
prompts = args.prompt
class_name = [p + args.additional_prompt for p in prompts]
if not os.path.exists(os.path.join(args.output_folder)):
os.makedirs(os.path.join(args.output_folder))
video_input, researve_frames = get_input(args) # f,c,h,w
video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w
if args.copy_no_mask:
pass
else:
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w
if args.copy_no_mask:
pass
else:
if args.mask_type == 'tsr':
masked_video = video_input * (mask == 0)
else:
masked_video = video_input * (mask == 0)
all_video = []
if researve_frames != 0:
all_video.append(video_input)
for idx, prompt in enumerate(class_name):
if idx == 0:
if args.copy_no_mask:
video_clip = auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_)
else:
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_)
else:
raise NotImplementedError
masked_video = video_input * (mask == 0)
video_clip = auto_inpainting_copy_no_mask(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_[:, 3:])
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
for fps in args.fps_list:
save_path = args.output_folder
if not os.path.exists(os.path.join(save_path)):
os.makedirs(os.path.join(save_path))
local_save_path = os.path.join(save_path, f'{video_name}.mp4')
print(f'save in {local_save_path}')
torchvision.io.write_video(local_save_path, video_, fps=fps)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args = parser.parse_args()
main(**OmegaConf.load(args.config))