Spaces:
Running
on
A10G
Running
on
A10G
""" | |
we introduce a temporal interpolation network to enhance the smoothness of generated videos and synthesize richer temporal details. | |
This network takes a 16-frame base video as input and produces an upsampled output consisting of 61 frames. | |
""" | |
import os | |
import sys | |
import math | |
try: | |
import utils | |
from diffusion import create_diffusion | |
from download import find_model | |
except: | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
import utils | |
from diffusion import create_diffusion | |
from download import find_model | |
import torch | |
import argparse | |
import torchvision | |
from einops import rearrange | |
from models import get_models | |
from torchvision.utils import save_image | |
from diffusers.models import AutoencoderKL | |
from models.clip import TextEmbedder | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import numpy as np | |
from torchvision import transforms | |
sys.path.append("..") | |
from datasets import video_transforms | |
from decord import VideoReader | |
from utils import mask_generation, mask_generation_before | |
from natsort import natsorted | |
from diffusers.utils.import_utils import is_xformers_available | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def get_input(args): | |
input_path = args.input_path | |
transform_video = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
# video_transforms.CenterCropResizeVideo((args.image_h, args.image_w)), | |
video_transforms.ResizeVideo((args.image_h, args.image_w)), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval) | |
if input_path is not None: | |
print(f'loading video from {input_path}') | |
if os.path.isdir(input_path): | |
file_list = os.listdir(input_path) | |
video_frames = [] | |
for file in file_list: | |
if file.endswith('jpg') or file.endswith('png'): | |
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0) | |
video_frames.append(image) | |
else: | |
continue | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
return video_frames, n | |
elif os.path.isfile(input_path): | |
_, full_file_name = os.path.split(input_path) | |
file_name, extention = os.path.splitext(full_file_name) | |
if extention == '.mp4': | |
video_reader = VideoReader(input_path) | |
total_frames = len(video_reader) | |
start_frame_ind, end_frame_ind = temporal_sample_func(total_frames) | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int) | |
video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous() | |
video_frames = transform_video(video_frames) | |
n = 3 | |
del video_reader | |
return video_frames, n | |
else: | |
raise TypeError(f'{extention} is not supported !!') | |
else: | |
raise ValueError('Please check your path input!!') | |
else: | |
print('given video is None, using text to video') | |
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8) | |
args.mask_type = 'all' | |
video_frames = transform_video(video_frames) | |
n = 0 | |
return video_frames, n | |
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,): | |
b,f,c,h,w=video_input.shape | |
latent_h = args.image_size[0] // 8 | |
latent_w = args.image_size[1] // 8 | |
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w | |
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() | |
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) | |
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() | |
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1) | |
masked_video = torch.cat([masked_video] * 2) if args.do_classifier_free_guidance else masked_video | |
mask = torch.cat([mask] * 2) if args.do_classifier_free_guidance else mask | |
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z | |
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt] | |
text_prompt = text_encoder(text_prompts=prompt_all, train=False) | |
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None) | |
if args.use_ddim_sample_loop: | |
samples = diffusion.ddim_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \ | |
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat | |
) | |
else: | |
samples = diffusion.p_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \ | |
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat | |
) # torch.Size([2, 4, 16, 32, 32]) | |
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32] | |
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32] | |
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256] | |
return video_clip | |
def auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,): | |
b,f,c,h,w=video_input.shape | |
latent_h = args.image_size[0] // 8 | |
latent_w = args.image_size[1] // 8 | |
video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous() | |
video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215) | |
video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous() | |
lr_indice = torch.IntTensor([i for i in range(0,62,4)]).to(device) | |
copied_video = torch.index_select(video_input, 2, lr_indice) | |
copied_video = torch.repeat_interleave(copied_video, 4, dim=2) | |
copied_video = copied_video[:,:,1:-2,:,:] | |
copied_video = torch.cat([copied_video] * 2) if args.do_classifier_free_guidance else copied_video | |
torch.manual_seed(args.seed) | |
torch.cuda.manual_seed(args.seed) | |
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w | |
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z | |
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt] | |
text_prompt = text_encoder(text_prompts=prompt_all, train=False) | |
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None) | |
torch.manual_seed(args.seed) | |
torch.cuda.manual_seed(args.seed) | |
if args.use_ddim_sample_loop: | |
samples = diffusion.ddim_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \ | |
progress=True, device=device, mask=None, x_start=copied_video, use_concat=args.use_concat, copy_no_mask=args.copy_no_mask, | |
) | |
else: | |
raise ValueError(f'We only have ddim sampling implementation for now') | |
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32] | |
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32] | |
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256] | |
return video_clip | |
def main(args): | |
for seed in args.seed_list: | |
args.seed = seed | |
torch.manual_seed(args.seed) | |
torch.cuda.manual_seed(args.seed) | |
# print(f'torch.seed() = {torch.seed()}') | |
print('sampling begins') | |
torch.set_grad_enabled(False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# device = "cpu" | |
ckpt_path = args.pretrained_path + "/lavie_interpolation.pt" | |
sd_path = args.pretrained_path + "/stable-diffusion-v1-4" | |
for ckpt in [ckpt_path]: | |
ckpt_num = str(ckpt_path).zfill(7) | |
# Load model: | |
latent_h = args.image_size[0] // 8 | |
latent_w = args.image_size[1] // 8 | |
args.image_h = args.image_size[0] | |
args.image_w = args.image_size[1] | |
args.latent_h = latent_h | |
args.latent_w = latent_w | |
print(f'args.copy_no_mask = {args.copy_no_mask}') | |
model = get_models(args, sd_path).to(device) | |
if args.use_compile: | |
model = torch.compile(model) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
model.enable_xformers_memory_efficient_attention() | |
# model.enable_vae_slicing() # ziqi added | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
# Auto-download a pre-trained model or load a custom checkpoint from train.py: | |
print(f'loading model from {ckpt_path}') | |
# load ckpt | |
state_dict = find_model(ckpt_path) | |
print(f'state_dict["conv_in.weight"].shape = {state_dict["conv_in.weight"].shape}') # [320, 8, 3, 3] | |
print('loading succeed') | |
# model.load_state_dict(state_dict) | |
torch.manual_seed(args.seed) | |
torch.cuda.manual_seed(args.seed) | |
model.eval() # important! | |
diffusion = create_diffusion(str(args.num_sampling_steps)) | |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(device) | |
text_encoder = TextEmbedder(sd_path).to(device) | |
video_list = os.listdir(args.input_folder) | |
args.input_path_list = [os.path.join(args.input_folder, video) for video in video_list] | |
for input_path in args.input_path_list: | |
args.input_path = input_path | |
print(f'=======================================') | |
if not args.input_path.endswith('.mp4'): | |
print(f'Skipping {args.input_path}') | |
continue | |
print(f'args.input_path = {args.input_path}') | |
torch.manual_seed(args.seed) | |
torch.cuda.manual_seed(args.seed) | |
# Labels to condition the model with (feel free to change): | |
video_name = args.input_path.split('/')[-1].split('.mp4')[0] | |
args.prompt = [video_name] | |
print(f'args.prompt = {args.prompt}') | |
prompts = args.prompt | |
class_name = [p + args.additional_prompt for p in prompts] | |
if not os.path.exists(os.path.join(args.output_folder)): | |
os.makedirs(os.path.join(args.output_folder)) | |
video_input, researve_frames = get_input(args) # f,c,h,w | |
video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w | |
if args.copy_no_mask: | |
pass | |
else: | |
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w | |
if args.copy_no_mask: | |
pass | |
else: | |
if args.mask_type == 'tsr': | |
masked_video = video_input * (mask == 0) | |
else: | |
masked_video = video_input * (mask == 0) | |
all_video = [] | |
if researve_frames != 0: | |
all_video.append(video_input) | |
for idx, prompt in enumerate(class_name): | |
if idx == 0: | |
if args.copy_no_mask: | |
video_clip = auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,) | |
video_clip_ = video_clip.unsqueeze(0) | |
all_video.append(video_clip_) | |
else: | |
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) | |
video_clip_ = video_clip.unsqueeze(0) | |
all_video.append(video_clip_) | |
else: | |
raise NotImplementedError | |
masked_video = video_input * (mask == 0) | |
video_clip = auto_inpainting_copy_no_mask(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) | |
video_clip_ = video_clip.unsqueeze(0) | |
all_video.append(video_clip_[:, 3:]) | |
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) | |
for fps in args.fps_list: | |
save_path = args.output_folder | |
if not os.path.exists(os.path.join(save_path)): | |
os.makedirs(os.path.join(save_path)) | |
local_save_path = os.path.join(save_path, f'{video_name}.mp4') | |
print(f'save in {local_save_path}') | |
torchvision.io.write_video(local_save_path, video_, fps=fps) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, required=True) | |
args = parser.parse_args() | |
main(**OmegaConf.load(args.config)) | |