File size: 5,613 Bytes
0035a82
 
 
 
 
 
 
 
 
 
9256323
0035a82
 
 
 
 
 
 
 
 
 
 
 
 
f333013
0035a82
083293a
0035a82
dd310fc
0035a82
f333013
 
 
 
0035a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd310fc
0035a82
dd310fc
0035a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e391f8
d81d0bf
1ee756b
9e391f8
 
0035a82
 
 
 
 
 
 
 
 
 
 
 
1c0be18
f333013
0035a82
1c0be18
4d461ba
 
52953c2
083293a
0035a82
 
 
dd310fc
0035a82
c561c81
f333013
0035a82
 
8ac084a
 
 
0035a82
8ac084a
0035a82
 
 
 
 
 
9256323
dd310fc
0035a82
 
 
 
f5cd544
0035a82
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed
from omegaconf import OmegaConf
import torch
from diffusers.utils.import_utils import is_xformers_available
import torchvision 
from utils import mask_generation_before
import os 
import cv2

config_path = "./configs/sample_i2v.yaml"
args = OmegaConf.load(config_path)
device = "cuda" if torch.cuda.is_available() else "cpu"

css = """
h1 {
  text-align: center;
}
#component-0 {
  max-width: 730px;
  margin: auto;
}
"""

def infer(prompt, image_inp, seed_inp, sampling_steps,width,height,infer_type):
    setup_seed(seed_inp)
    args.num_sampling_steps = sampling_steps
    img = cv2.imread(image_inp)
    new_size = [height,width]  
    args.image_size = new_size
    if infer_type == 'ddpm':
        args.sample_method = 'ddpm'
    elif infer_type == 'ddim':
        args.sample_method = 'ddim'
    vae, model, text_encoder, diffusion = model_i2v_fun(args)
    vae.to(device)
    model.to(device)
    text_encoder.to(device)

    if args.use_fp16:
        vae.to(dtype=torch.float16)
        model.to(dtype=torch.float16)
        text_encoder.to(dtype=torch.float16)

    if args.enable_xformers_memory_efficient_attention and device=="cuda":
        if is_xformers_available():
            model.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")


    video_input, reserve_frames = get_input(image_inp, args)
    video_input = video_input.to(device).unsqueeze(0)
    mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device)
    masked_video = video_input * (mask == 0)
    prompt = prompt + args.additional_prompt
    video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
    video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
    torchvision.io.write_video(os.path.join(args.save_img_path,  prompt+ '.mp4'), video_, fps=8)

    
    return os.path.join(args.save_img_path,  prompt+ '.mp4')



# def clean():
    # return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
    # return gr.Video.update(value=None)


title = """
    <div style="text-align: center; max-width: 700px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            SEINE: Image-to-Video generation
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Apply SEINE to generate a video 
        </p>
    </div>
"""



with gr.Blocks(css='style.css') as demo:
    gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>")
    gr.Markdown(
        """<div style="text-align:center">
        [<a href="https://arxiv.org/abs/2310.20700">Arxiv Report</a>] | [<a href="https://vchitect.github.io/SEINE-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/SEINE">Github</a>]</div>
        """
    )
    with gr.Column(elem_id="col-container"):
        # gr.HTML(title)
        
        with gr.Row():
            with gr.Column():
                image_inp = gr.Image(type='filepath')
                
            with gr.Column():
                
                prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
                
                with gr.Row():
                    infer_type = gr.Dropdown(['ddpm','ddim'], label='infer_type',value='ddim')
                    sampling_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=100, step=1)
                    seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in")

                with gr.Row():
                    width = gr.Slider(label='width',minimum=1,maximum=2000,value=512,step=1)
                    height = gr.Slider(label='height',minimum=1,maximum=2000,value=320,step=1)
                # sampling_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
                
                
                submit_btn = gr.Button("Generate video")
                # clean_btn = gr.Button("Clean video")

        video_out = gr.Video(label="Video result", elem_id="video-output", width = 750)
        inputs = [prompt,image_inp, seed_inp, sampling_steps,width,height,infer_type]
        outputs = [video_out]
        ex = gr.Examples(
            examples = [["./input/i2v/The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",50,560,240,'ddim'],
                        ["./input/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottle",50,560,240,'ddim'],
                        ["./input/i2v/The_picture_shows_the_beauty_of_the_sea_and_at_the_same.png","A video of the beauty of the sea",50,560,240,'ddim']],
            fn = infer,
            inputs = [image_inp, prompt, sampling_steps,width,height,infer_type],
            outputs=[video_out],
            cache_examples=False


        )
        ex.dataset.headers = [""]
       
    # clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
    submit_btn.click(infer, inputs, outputs)
    # share_button.click(None, [], [], _js=share_js)


demo.queue(max_size=12).launch()