YU-XI commited on
Commit
184bec9
1 Parent(s): 98b08e8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import asyncio
4
+ from langchain_core.prompts import PromptTemplate
5
+ from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
6
+ from langchain_community.document_loaders import PyPDFLoader
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ import google.generativeai as genai
9
+ from langchain.chains.question_answering import load_qa_chain
10
+ import torch
11
+ from transformers import AutoTokenizer, AutoModelForCausalLM
12
+
13
+ # Gemini PDF QA System
14
+ async def initialize(file_path, question):
15
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
16
+ model = genai.GenerativeModel('gemini-pro')
17
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
18
+ prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
19
+ not contained in the context, say "answer not available in context" \n\n
20
+ Context: \n {context}?\n
21
+ Question: \n {question} \n
22
+ Answer:
23
+ """
24
+ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
25
+ if os.path.exists(file_path):
26
+ pdf_loader = PyPDFLoader(file_path)
27
+ pages = pdf_loader.load_and_split()
28
+ context = "\n".join(str(page.page_content) for page in pages[:30])
29
+ stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
30
+ stuff_answer = await stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
31
+ return stuff_answer['output_text']
32
+ else:
33
+ return "Error: Unable to process the document. Please ensure the PDF file is valid."
34
+
35
+ async def pdf_qa(file, question):
36
+ answer = await initialize(file.name, question)
37
+ return answer
38
+
39
+ # Mistral Text Completion
40
+ def load_mistral_model():
41
+ model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
43
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
44
+ dtype = torch.bfloat16
45
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
46
+ return tokenizer, model
47
+
48
+ def generate_text(prompt, max_length=50):
49
+ tokenizer, model = load_mistral_model()
50
+ inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
51
+ outputs = model.generate(inputs, max_length=max_length)
52
+ return tokenizer.decode(outputs[0])
53
+
54
+ # Gradio Interface
55
+ input_file = gr.File(label="Upload PDF File")
56
+ input_question = gr.Textbox(label="Ask about the document")
57
+ output_text_gemini = gr.Textbox(label="Answer - GeminiPro")
58
+ input_prompt = gr.Textbox(label="Enter prompt for text completion")
59
+ output_text_mistral = gr.Textbox(label="Completed Text - Mistral")
60
+
61
+ def pdf_qa_wrapper(file, question):
62
+ return asyncio.run(pdf_qa(file, question))
63
+
64
+ # Create Gradio Interface
65
+ iface = gr.Interface(
66
+ fn=[pdf_qa_wrapper, generate_text],
67
+ inputs=[
68
+ [input_file, input_question],
69
+ input_prompt
70
+ ],
71
+ outputs=[output_text_gemini, output_text_mistral],
72
+ title="Combined PDF QA and Text Completion System",
73
+ description="Upload a PDF file to ask questions about its content, or enter a prompt for text completion."
74
+ )
75
+
76
+ iface.launch()