File size: 18,009 Bytes
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d77c3
 
2d5f249
 
 
 
 
 
 
 
 
 
eaf88bc
2d5f249
 
 
c5b04dc
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d77c3
2d5f249
de9b060
 
 
 
 
2d5f249
8a246ed
de9b060
2d5f249
 
 
 
 
 
 
 
96d77c3
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69cb8a3
2d5f249
f191c89
69cb8a3
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f836225
2d5f249
f836225
2d5f249
 
eaf88bc
 
 
 
2d5f249
 
 
 
eaf88bc
 
2d5f249
 
 
 
 
 
 
 
 
eaf88bc
 
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbb034d
2d5f249
 
 
 
 
 
dbb034d
 
 
 
 
 
 
 
2d5f249
dbb034d
 
 
2d5f249
 
 
 
 
 
dbb034d
 
2d5f249
 
 
dbb034d
2d5f249
 
 
 
 
 
 
 
 
f5e8b77
2d5f249
daafd12
8ec33ea
 
2d5f249
 
eaf88bc
 
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d77c3
 
2d5f249
 
 
 
96d77c3
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f836225
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0b5d8f
2d5f249
 
 
 
 
 
 
 
f598b6f
 
 
 
 
 
 
 
96d77c3
f598b6f
 
96d77c3
f598b6f
 
2d5f249
daafd12
f598b6f
 
8ec33ea
 
2d5f249
 
de9b060
 
2d5f249
 
 
 
 
dbb034d
2d5f249
 
 
96d77c3
8ec33ea
 
2d5f249
8ec33ea
 
96d77c3
 
 
 
 
 
b0f2345
 
 
 
c0b5d8f
cfde81c
fe5fe63
de9b060
96d77c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]

import os
import gc

import logging
from lib.common.config import cfg
from lib.dataset.mesh_util import (
    load_checkpoint,
    update_mesh_shape_prior_losses,
    blend_rgb_norm,
    unwrap,
    remesh,
    tensor2variable,
    rot6d_to_rotmat
)

from lib.dataset.TestDataset import TestDataset
from lib.common.render import query_color
from lib.net.local_affine import LocalAffine
from pytorch3d.structures import Meshes
from apps.ICON import ICON

from termcolor import colored
import numpy as np
from PIL import Image
import trimesh
import numpy as np
from tqdm import tqdm

import torch
torch.backends.cudnn.benchmark = True

logging.getLogger("trimesh").setLevel(logging.ERROR)


def generate_model(in_path, model_type):

    torch.cuda.empty_cache()
    
    if model_type == 'ICON':
        model_type = 'icon-filter'
    else:
        model_type = model_type.lower()

    config_dict = {'loop_smpl': 100,
                   'loop_cloth': 200,
                   'patience': 5,
                   'out_dir': './results',
                   'hps_type': 'pymaf',
                   'config': f"./configs/{model_type}.yaml"}

    # cfg read and merge
    cfg.merge_from_file(config_dict['config'])
    cfg.merge_from_file("./lib/pymaf/configs/pymaf_config.yaml")

    os.makedirs(config_dict['out_dir'], exist_ok=True)

    cfg_show_list = [
        "test_gpus",
        [0],
        "mcube_res",
        256,
        "clean_mesh",
        True,
    ]

    cfg.merge_from_list(cfg_show_list)
    cfg.freeze()

    os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    device = torch.device(f"cuda:0")

    # load model and dataloader
    model = ICON(cfg)
    model = load_checkpoint(model, cfg)

    dataset_param = {
        'image_path': in_path,
        'seg_dir': None,
        'has_det': True,            # w/ or w/o detection
        'hps_type': 'pymaf'   # pymaf/pare/pixie
    }

    if config_dict['hps_type'] == "pixie" and "pamir" in config_dict['config']:
        print(colored("PIXIE isn't compatible with PaMIR, thus switch to PyMAF", "red"))
        dataset_param["hps_type"] = "pymaf"

    dataset = TestDataset(dataset_param, device)

    print(colored(f"Dataset Size: {len(dataset)}", "green"))

    pbar = tqdm(dataset)

    for data in pbar:

        pbar.set_description(f"{data['name']}")

        in_tensor = {"smpl_faces": data["smpl_faces"], "image": data["image"]}

        # The optimizer and variables
        optimed_pose = torch.tensor(
            data["body_pose"], device=device, requires_grad=True
        )  # [1,23,3,3]
        optimed_trans = torch.tensor(
            data["trans"], device=device, requires_grad=True
        )  # [3]
        optimed_betas = torch.tensor(
            data["betas"], device=device, requires_grad=True
        )  # [1,10]
        optimed_orient = torch.tensor(
            data["global_orient"], device=device, requires_grad=True
        )  # [1,1,3,3]

        optimizer_smpl = torch.optim.Adam(
            [optimed_pose, optimed_trans, optimed_betas, optimed_orient],
            lr=1e-3,
            amsgrad=True,
        )
        scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer_smpl,
            mode="min",
            factor=0.5,
            verbose=0,
            min_lr=1e-5,
            patience=config_dict['patience'],
        )

        losses = {
            # Cloth: Normal_recon - Normal_pred
            "cloth": {"weight": 1e1, "value": 0.0},
            # Cloth: [RT]_v1 - [RT]_v2 (v1-edge-v2)
            "stiffness": {"weight": 1e5, "value": 0.0},
            # Cloth: det(R) = 1
            "rigid": {"weight": 1e5, "value": 0.0},
            # Cloth: edge length
            "edge": {"weight": 0, "value": 0.0},
            # Cloth: normal consistency
            "nc": {"weight": 0, "value": 0.0},
            # Cloth: laplacian smoonth
            "laplacian": {"weight": 1e2, "value": 0.0},
            # Body: Normal_pred - Normal_smpl
            "normal": {"weight": 1e0, "value": 0.0},
            # Body: Silhouette_pred - Silhouette_smpl
            "silhouette": {"weight": 1e0, "value": 0.0},
        }

        # smpl optimization

        loop_smpl = tqdm(range(config_dict['loop_smpl']))

        for _ in loop_smpl:

            optimizer_smpl.zero_grad()
            
            # 6d_rot to rot_mat
            optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(-1,6)).unsqueeze(0)
            optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(-1,6)).unsqueeze(0)

            if dataset_param["hps_type"] != "pixie":
                smpl_out = dataset.smpl_model(
                    betas=optimed_betas,
                    body_pose=optimed_pose_mat,
                    global_orient=optimed_orient_mat,
                    pose2rot=False,
                )

                smpl_verts = ((smpl_out.vertices) +
                              optimed_trans) * data["scale"]
            else:
                smpl_verts, _, _ = dataset.smpl_model(
                    shape_params=optimed_betas,
                    expression_params=tensor2variable(data["exp"], device),
                    body_pose=optimed_pose_mat,
                    global_pose=optimed_orient_mat,
                    jaw_pose=tensor2variable(data["jaw_pose"], device),
                    left_hand_pose=tensor2variable(
                        data["left_hand_pose"], device),
                    right_hand_pose=tensor2variable(
                        data["right_hand_pose"], device),
                )

                smpl_verts = (smpl_verts + optimed_trans) * data["scale"]

            # render optimized mesh (normal, T_normal, image [-1,1])
            in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
                smpl_verts *
                torch.tensor([1.0, -1.0, -1.0]
                             ).to(device), in_tensor["smpl_faces"]
            )
            T_mask_F, T_mask_B = dataset.render.get_silhouette_image()

            with torch.no_grad():
                in_tensor["normal_F"], in_tensor["normal_B"] = model.netG.normal_filter(
                    in_tensor
                )

            diff_F_smpl = torch.abs(
                in_tensor["T_normal_F"] - in_tensor["normal_F"])
            diff_B_smpl = torch.abs(
                in_tensor["T_normal_B"] - in_tensor["normal_B"])

            losses["normal"]["value"] = (diff_F_smpl + diff_B_smpl).mean()

            # silhouette loss
            smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]
            gt_arr = torch.cat(
                [in_tensor["normal_F"][0], in_tensor["normal_B"][0]], dim=2
            ).permute(1, 2, 0)
            gt_arr = ((gt_arr + 1.0) * 0.5).to(device)
            bg_color = (
                torch.Tensor([0.5, 0.5, 0.5]).unsqueeze(
                    0).unsqueeze(0).to(device)
            )
            gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float()
            diff_S = torch.abs(smpl_arr - gt_arr)
            losses["silhouette"]["value"] = diff_S.mean()

            # Weighted sum of the losses
            smpl_loss = 0.0
            pbar_desc = "Body Fitting --- "
            for k in ["normal", "silhouette"]:
                pbar_desc += f"{k}: {losses[k]['value'] * losses[k]['weight']:.3f} | "
                smpl_loss += losses[k]["value"] * losses[k]["weight"]
            pbar_desc += f"Total: {smpl_loss:.3f}"
            loop_smpl.set_description(pbar_desc)

            smpl_loss.backward()
            optimizer_smpl.step()
            scheduler_smpl.step(smpl_loss)
            in_tensor["smpl_verts"] = smpl_verts * \
                torch.tensor([1.0, 1.0, -1.0]).to(device)

        # visualize the optimization process
        # 1. SMPL Fitting
        # 2. Clothes Refinement

        os.makedirs(os.path.join(config_dict['out_dir'], cfg.name,
                    "refinement"), exist_ok=True)

        # visualize the final results in self-rotation mode
        os.makedirs(os.path.join(config_dict['out_dir'],
                    cfg.name, "vid"), exist_ok=True)

        # final results rendered as image
        # 1. Render the final fitted SMPL (xxx_smpl.png)
        # 2. Render the final reconstructed clothed human (xxx_cloth.png)
        # 3. Blend the original image with predicted cloth normal (xxx_overlap.png)

        os.makedirs(os.path.join(config_dict['out_dir'],
                    cfg.name, "png"), exist_ok=True)

        # final reconstruction meshes
        # 1. SMPL mesh (xxx_smpl.obj)
        # 2. SMPL params (xxx_smpl.npy)
        # 3. clohted mesh (xxx_recon.obj)
        # 4. remeshed clothed mesh (xxx_remesh.obj)
        # 5. refined clothed mesh (xxx_refine.obj)

        os.makedirs(os.path.join(config_dict['out_dir'],
                    cfg.name, "obj"), exist_ok=True)

        norm_pred_F = (
            ((in_tensor["normal_F"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
            .detach()
            .cpu()
            .numpy()
            .astype(np.uint8)
        )
        
        norm_pred_B = (
            ((in_tensor["normal_B"][0].permute(1, 2, 0) + 1.0) * 255.0 / 2.0)
            .detach()
            .cpu()
            .numpy()
            .astype(np.uint8)
        )

        norm_orig_F = unwrap(norm_pred_F, data)
        norm_orig_B = unwrap(norm_pred_B, data)
        
        mask_orig = unwrap(
            np.repeat(
                data["mask"].permute(1, 2, 0).detach().cpu().numpy(), 3, axis=2
            ).astype(np.uint8),
            data,
        )
        rgb_norm_F = blend_rgb_norm(data["ori_image"], norm_orig_F, mask_orig)
        rgb_norm_B = blend_rgb_norm(data["ori_image"], norm_orig_B, mask_orig)

        Image.fromarray(
            np.concatenate(
                [data["ori_image"].astype(np.uint8), rgb_norm_F, rgb_norm_B], axis=1)
        ).save(os.path.join(config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png"))

        smpl_obj = trimesh.Trimesh(
            in_tensor["smpl_verts"].detach().cpu()[0] *
            torch.tensor([1.0, -1.0, 1.0]),
            in_tensor['smpl_faces'].detach().cpu()[0],
            process=False,
            maintains_order=True
        )
        smpl_obj.visual.vertex_colors = (smpl_obj.vertex_normals+1.0)*255.0*0.5
        smpl_obj.export(
            f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj")
        smpl_obj.export(
            f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb")

        smpl_info = {'betas': optimed_betas,
                     'pose': optimed_pose_mat,
                     'orient': optimed_orient_mat,
                     'trans': optimed_trans}

        np.save(
            f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy", smpl_info, allow_pickle=True)

        # ------------------------------------------------------------------------------------------------------------------

        # cloth optimization

        # cloth recon
        in_tensor.update(
            dataset.compute_vis_cmap(
                in_tensor["smpl_verts"][0], in_tensor["smpl_faces"][0]
            )
        )

        if cfg.net.prior_type == "pamir":
            in_tensor.update(
                dataset.compute_voxel_verts(
                    optimed_pose,
                    optimed_orient,
                    optimed_betas,
                    optimed_trans,
                    data["scale"],
                )
            )

        with torch.no_grad():
            verts_pr, faces_pr, _ = model.test_single(in_tensor)

        recon_obj = trimesh.Trimesh(
            verts_pr, faces_pr, process=False, maintains_order=True
        )
        recon_obj.visual.vertex_colors = (
            recon_obj.vertex_normals+1.0)*255.0*0.5
        recon_obj.export(
            os.path.join(config_dict['out_dir'], cfg.name,
                         f"obj/{data['name']}_recon.obj")
        )

        # Isotropic Explicit Remeshing for better geometry topology
        verts_refine, faces_refine = remesh(os.path.join(config_dict['out_dir'], cfg.name,
                                                         f"obj/{data['name']}_recon.obj"), 0.5, device)

        # define local_affine deform verts
        mesh_pr = Meshes(verts_refine, faces_refine).to(device)
        local_affine_model = LocalAffine(
            mesh_pr.verts_padded().shape[1], mesh_pr.verts_padded().shape[0], mesh_pr.edges_packed()).to(device)
        optimizer_cloth = torch.optim.Adam(
            [{'params': local_affine_model.parameters()}], lr=1e-4, amsgrad=True)

        scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer_cloth,
            mode="min",
            factor=0.1,
            verbose=0,
            min_lr=1e-5,
            patience=config_dict['patience'],
        )

        final = None

        if config_dict['loop_cloth'] > 0:

            loop_cloth = tqdm(range(config_dict['loop_cloth']))

            for _ in loop_cloth:

                optimizer_cloth.zero_grad()

                deformed_verts, stiffness, rigid = local_affine_model(
                    verts_refine.to(device), return_stiff=True)
                mesh_pr = mesh_pr.update_padded(deformed_verts)

                # losses for laplacian, edge, normal consistency
                update_mesh_shape_prior_losses(mesh_pr, losses)

                in_tensor["P_normal_F"], in_tensor["P_normal_B"] = dataset.render_normal(
                    mesh_pr.verts_padded(), mesh_pr.faces_padded())

                diff_F_cloth = torch.abs(
                    in_tensor["P_normal_F"] - in_tensor["normal_F"])
                diff_B_cloth = torch.abs(
                    in_tensor["P_normal_B"] - in_tensor["normal_B"])

                losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean()
                losses["stiffness"]["value"] = torch.mean(stiffness)
                losses["rigid"]["value"] = torch.mean(rigid)

                # Weighted sum of the losses
                cloth_loss = torch.tensor(0.0, requires_grad=True).to(device)
                pbar_desc = "Cloth Refinement --- "

                for k in losses.keys():
                    if k not in ["normal", "silhouette"] and losses[k]["weight"] > 0.0:
                        cloth_loss = cloth_loss + \
                            losses[k]["value"] * losses[k]["weight"]
                        pbar_desc += f"{k}:{losses[k]['value']* losses[k]['weight']:.5f} | "

                pbar_desc += f"Total: {cloth_loss:.5f}"
                loop_cloth.set_description(pbar_desc)

                # update params
                cloth_loss.backward()
                optimizer_cloth.step()
                scheduler_cloth.step(cloth_loss)

            final = trimesh.Trimesh(
                mesh_pr.verts_packed().detach().squeeze(0).cpu(),
                mesh_pr.faces_packed().detach().squeeze(0).cpu(),
                process=False, maintains_order=True
            )
            
            # only with front texture
            tex_colors = query_color(
                mesh_pr.verts_packed().detach().squeeze(0).cpu(),
                mesh_pr.faces_packed().detach().squeeze(0).cpu(),
                in_tensor["image"],
                device=device,
            )

            # full normal textures
            norm_colors = (mesh_pr.verts_normals_padded().squeeze(
                0).detach().cpu() + 1.0) * 0.5 * 255.0
                
            final.visual.vertex_colors = tex_colors
            final.export(
                f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj")
                
            final.visual.vertex_colors = norm_colors
            final.export(
                f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb")

        # always export visualized video regardless of the cloth refinment
        verts_lst = [smpl_obj.vertices, final.vertices]
        faces_lst = [smpl_obj.faces, final.faces]

        # self-rotated video
        dataset.render.load_meshes(
            verts_lst, faces_lst)
        dataset.render.get_rendered_video(
            [data["ori_image"], rgb_norm_F, rgb_norm_B],
            os.path.join(config_dict['out_dir'], cfg.name,
                         f"vid/{data['name']}_cloth.mp4"),
        )

    smpl_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.obj"
    smpl_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.glb"
    smpl_npy_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_smpl.npy"
    refine_obj_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.obj"
    refine_glb_path = f"{config_dict['out_dir']}/{cfg.name}/obj/{data['name']}_refine.glb"

    video_path = os.path.join(
        config_dict['out_dir'], cfg.name, f"vid/{data['name']}_cloth.mp4")
    overlap_path = os.path.join(
        config_dict['out_dir'], cfg.name, f"png/{data['name']}_overlap.png")

    # clean all the variables
    for element in dir():
        if 'path' not in element:
            del locals()[element]
    gc.collect()
    torch.cuda.empty_cache()
    
    return [smpl_glb_path, smpl_obj_path,smpl_npy_path,
            refine_glb_path, refine_obj_path,
            video_path, video_path, overlap_path]