Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
from lib.renderer.gl.normal_render import NormalRender | |
from lib.dataset.mesh_util import projection | |
from lib.common.render import Render | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torch import nn | |
import trimesh | |
import os.path as osp | |
from PIL import Image | |
class Evaluator: | |
_normal_render = None | |
def init_gl(): | |
Evaluator._normal_render = NormalRender(width=512, height=512) | |
def __init__(self, device): | |
self.device = device | |
self.render = Render(size=512, device=self.device) | |
self.error_term = nn.MSELoss() | |
self.offset = 0.0 | |
self.scale_factor = None | |
def set_mesh(self, result_dict, scale_factor=1.0, offset=0.0): | |
for key in result_dict.keys(): | |
if torch.is_tensor(result_dict[key]): | |
result_dict[key] = result_dict[key].detach().cpu().numpy() | |
for k, v in result_dict.items(): | |
setattr(self, k, v) | |
self.scale_factor = scale_factor | |
self.offset = offset | |
def _render_normal(self, mesh, deg, norms=None): | |
view_mat = np.identity(4) | |
rz = deg / 180.0 * np.pi | |
model_mat = np.identity(4) | |
model_mat[:3, :3] = self._normal_render.euler_to_rot_mat(0, rz, 0) | |
model_mat[1, 3] = self.offset | |
view_mat[2, 2] *= -1 | |
self._normal_render.set_matrices(view_mat, model_mat) | |
if norms is None: | |
norms = mesh.vertex_normals | |
self._normal_render.set_normal_mesh(self.scale_factor * mesh.vertices, | |
mesh.faces, norms, mesh.faces) | |
self._normal_render.draw() | |
normal_img = self._normal_render.get_color() | |
return normal_img | |
def render_mesh_list(self, mesh_lst): | |
self.offset = 0.0 | |
self.scale_factor = 1.0 | |
full_list = [] | |
for mesh in mesh_lst: | |
row_lst = [] | |
for deg in np.arange(0, 360, 90): | |
normal = self._render_normal(mesh, deg) | |
row_lst.append(normal) | |
full_list.append(np.concatenate(row_lst, axis=1)) | |
res_array = np.concatenate(full_list, axis=0) | |
return res_array | |
def _get_reproj_normal_error(self, deg): | |
tgt_normal = self._render_normal(self.tgt_mesh, deg) | |
src_normal = self._render_normal(self.src_mesh, deg) | |
error = (((src_normal[:, :, :3] - | |
tgt_normal[:, :, :3])**2).sum(axis=2).mean(axis=(0, 1))) | |
return error, [src_normal, tgt_normal] | |
def render_normal(self, verts, faces): | |
verts = verts[0].detach().cpu().numpy() | |
faces = faces[0].detach().cpu().numpy() | |
mesh_F = trimesh.Trimesh(verts * np.array([1.0, -1.0, 1.0]), faces) | |
mesh_B = trimesh.Trimesh(verts * np.array([1.0, -1.0, -1.0]), faces) | |
self.scale_factor = 1.0 | |
normal_F = self._render_normal(mesh_F, 0) | |
normal_B = self._render_normal(mesh_B, | |
0, | |
norms=mesh_B.vertex_normals * | |
np.array([-1.0, -1.0, 1.0])) | |
mask = normal_F[:, :, 3:4] | |
normal_F = (torch.as_tensor(2.0 * (normal_F - 0.5) * mask).permute( | |
2, 0, 1)[:3, :, :].float().unsqueeze(0).to(self.device)) | |
normal_B = (torch.as_tensor(2.0 * (normal_B - 0.5) * mask).permute( | |
2, 0, 1)[:3, :, :].float().unsqueeze(0).to(self.device)) | |
return {"T_normal_F": normal_F, "T_normal_B": normal_B} | |
def calculate_normal_consist( | |
self, | |
frontal=True, | |
back=True, | |
left=True, | |
right=True, | |
save_demo_img=None, | |
return_demo=False, | |
): | |
# reproj error | |
# if save_demo_img is not None, save a visualization at the given path (etc, "./test.png") | |
if self._normal_render is None: | |
print( | |
"In order to use normal render, " | |
"you have to call init_gl() before initialing any evaluator objects." | |
) | |
return -1 | |
side_cnt = 0 | |
total_error = 0 | |
demo_list = [] | |
if frontal: | |
side_cnt += 1 | |
error, normal_lst = self._get_reproj_normal_error(0) | |
total_error += error | |
demo_list.append(np.concatenate(normal_lst, axis=0)) | |
if back: | |
side_cnt += 1 | |
error, normal_lst = self._get_reproj_normal_error(180) | |
total_error += error | |
demo_list.append(np.concatenate(normal_lst, axis=0)) | |
if left: | |
side_cnt += 1 | |
error, normal_lst = self._get_reproj_normal_error(90) | |
total_error += error | |
demo_list.append(np.concatenate(normal_lst, axis=0)) | |
if right: | |
side_cnt += 1 | |
error, normal_lst = self._get_reproj_normal_error(270) | |
total_error += error | |
demo_list.append(np.concatenate(normal_lst, axis=0)) | |
if save_demo_img is not None: | |
res_array = np.concatenate(demo_list, axis=1) | |
res_img = Image.fromarray((res_array * 255).astype(np.uint8)) | |
res_img.save(save_demo_img) | |
if return_demo: | |
res_array = np.concatenate(demo_list, axis=1) | |
return res_array | |
else: | |
return total_error | |
def space_transfer(self): | |
# convert from GT to SDF | |
self.verts_pr -= self.recon_size / 2.0 | |
self.verts_pr /= self.recon_size / 2.0 | |
self.verts_gt = projection(self.verts_gt, self.calib) | |
self.verts_gt[:, 1] *= -1 | |
self.tgt_mesh = trimesh.Trimesh(self.verts_gt, self.faces_gt) | |
self.src_mesh = trimesh.Trimesh(self.verts_pr, self.faces_pr) | |
# (self.tgt_mesh+self.src_mesh).show() | |
def export_mesh(self, dir, name): | |
self.tgt_mesh.visual.vertex_colors = np.array([255, 0, 0]) | |
self.src_mesh.visual.vertex_colors = np.array([0, 255, 0]) | |
(self.tgt_mesh + self.src_mesh).export( | |
osp.join(dir, f"{name}_gt_pr.obj")) | |
def calculate_chamfer_p2s(self, sampled_points=1000): | |
"""calculate the geometry metrics [chamfer, p2s, chamfer_H, p2s_H] | |
Args: | |
verts_gt (torch.cuda.tensor): [N, 3] | |
faces_gt (torch.cuda.tensor): [M, 3] | |
verts_pr (torch.cuda.tensor): [N', 3] | |
faces_pr (torch.cuda.tensor): [M', 3] | |
sampled_points (int, optional): use smaller number for faster testing. Defaults to 1000. | |
Returns: | |
tuple: chamfer, p2s, chamfer_H, p2s_H | |
""" | |
gt_surface_pts, _ = trimesh.sample.sample_surface_even( | |
self.tgt_mesh, sampled_points) | |
pred_surface_pts, _ = trimesh.sample.sample_surface_even( | |
self.src_mesh, sampled_points) | |
_, dist_pred_gt, _ = trimesh.proximity.closest_point( | |
self.src_mesh, gt_surface_pts) | |
_, dist_gt_pred, _ = trimesh.proximity.closest_point( | |
self.tgt_mesh, pred_surface_pts) | |
dist_pred_gt[np.isnan(dist_pred_gt)] = 0 | |
dist_gt_pred[np.isnan(dist_gt_pred)] = 0 | |
chamfer_dist = 0.5 * (dist_pred_gt.mean() + | |
dist_gt_pred.mean()).item() * 100 | |
p2s_dist = dist_pred_gt.mean().item() * 100 | |
return chamfer_dist, p2s_dist | |
def calc_acc(self, output, target, thres=0.5, use_sdf=False): | |
# # remove the surface points with thres | |
# non_surf_ids = (target != thres) | |
# output = output[non_surf_ids] | |
# target = target[non_surf_ids] | |
with torch.no_grad(): | |
output = output.masked_fill(output < thres, 0.0) | |
output = output.masked_fill(output > thres, 1.0) | |
if use_sdf: | |
target = target.masked_fill(target < thres, 0.0) | |
target = target.masked_fill(target > thres, 1.0) | |
acc = output.eq(target).float().mean() | |
# iou, precison, recall | |
output = output > thres | |
target = target > thres | |
union = output | target | |
inter = output & target | |
_max = torch.tensor(1.0).to(output.device) | |
union = max(union.sum().float(), _max) | |
true_pos = max(inter.sum().float(), _max) | |
vol_pred = max(output.sum().float(), _max) | |
vol_gt = max(target.sum().float(), _max) | |
return acc, true_pos / union, true_pos / vol_pred, true_pos / vol_gt | |