Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
import os.path as osp | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
class NormalDataset(): | |
def __init__(self, cfg, split='train'): | |
self.split = split | |
self.root = cfg.root | |
self.overfit = cfg.overfit | |
self.opt = cfg.dataset | |
self.datasets = self.opt.types | |
self.input_size = self.opt.input_size | |
self.set_splits = self.opt.set_splits | |
self.scales = self.opt.scales | |
self.pifu = self.opt.pifu | |
# input data types and dimensions | |
self.in_nml = [item[0] for item in cfg.net.in_nml] | |
self.in_nml_dim = [item[1] for item in cfg.net.in_nml] | |
self.in_total = self.in_nml + ['normal_F', 'normal_B'] | |
self.in_total_dim = self.in_nml_dim + [3, 3] | |
if self.split != 'train': | |
self.rotations = range(0, 360, 120) | |
else: | |
self.rotations = np.arange(0, 360, 360 / | |
self.opt.rotation_num).astype(np.int) | |
self.datasets_dict = {} | |
for dataset_id, dataset in enumerate(self.datasets): | |
dataset_dir = osp.join(self.root, dataset, "smplx") | |
self.datasets_dict[dataset] = { | |
"subjects": | |
np.loadtxt(osp.join(self.root, dataset, "all.txt"), dtype=str), | |
"path": | |
dataset_dir, | |
"scale": | |
self.scales[dataset_id] | |
} | |
self.subject_list = self.get_subject_list(split) | |
# PIL to tensor | |
self.image_to_tensor = transforms.Compose([ | |
transforms.Resize(self.input_size), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
# PIL to tensor | |
self.mask_to_tensor = transforms.Compose([ | |
transforms.Resize(self.input_size), | |
transforms.ToTensor(), | |
transforms.Normalize((0.0, ), (1.0, )) | |
]) | |
def get_subject_list(self, split): | |
subject_list = [] | |
for dataset in self.datasets: | |
if self.pifu: | |
txt = osp.join(self.root, dataset, f'{split}_pifu.txt') | |
else: | |
txt = osp.join(self.root, dataset, f'{split}.txt') | |
if osp.exists(txt): | |
print(f"load from {txt}") | |
subject_list += sorted(np.loadtxt(txt, dtype=str).tolist()) | |
if self.pifu: | |
miss_pifu = sorted( | |
np.loadtxt(osp.join(self.root, dataset, | |
"miss_pifu.txt"), | |
dtype=str).tolist()) | |
subject_list = [ | |
subject for subject in subject_list | |
if subject not in miss_pifu | |
] | |
subject_list = [ | |
"renderpeople/" + subject for subject in subject_list | |
] | |
else: | |
train_txt = osp.join(self.root, dataset, 'train.txt') | |
val_txt = osp.join(self.root, dataset, 'val.txt') | |
test_txt = osp.join(self.root, dataset, 'test.txt') | |
print( | |
f"generate lists of [train, val, test] \n {train_txt} \n {val_txt} \n {test_txt} \n" | |
) | |
split_txt = osp.join(self.root, dataset, f'{split}.txt') | |
subjects = self.datasets_dict[dataset]['subjects'] | |
train_split = int(len(subjects) * self.set_splits[0]) | |
val_split = int( | |
len(subjects) * self.set_splits[1]) + train_split | |
with open(train_txt, "w") as f: | |
f.write("\n".join(dataset + "/" + item | |
for item in subjects[:train_split])) | |
with open(val_txt, "w") as f: | |
f.write("\n".join( | |
dataset + "/" + item | |
for item in subjects[train_split:val_split])) | |
with open(test_txt, "w") as f: | |
f.write("\n".join(dataset + "/" + item | |
for item in subjects[val_split:])) | |
subject_list += sorted( | |
np.loadtxt(split_txt, dtype=str).tolist()) | |
bug_list = sorted( | |
np.loadtxt(osp.join(self.root, 'bug.txt'), dtype=str).tolist()) | |
subject_list = [ | |
subject for subject in subject_list if (subject not in bug_list) | |
] | |
return subject_list | |
def __len__(self): | |
return len(self.subject_list) * len(self.rotations) | |
def __getitem__(self, index): | |
# only pick the first data if overfitting | |
if self.overfit: | |
index = 0 | |
rid = index % len(self.rotations) | |
mid = index // len(self.rotations) | |
rotation = self.rotations[rid] | |
# choose specific test sets | |
subject = self.subject_list[mid] | |
subject_render = "/".join( | |
[subject.split("/")[0] + "_12views", | |
subject.split("/")[1]]) | |
# setup paths | |
data_dict = { | |
'dataset': | |
subject.split("/")[0], | |
'subject': | |
subject, | |
'rotation': | |
rotation, | |
'image_path': | |
osp.join(self.root, subject_render, 'render', | |
f'{rotation:03d}.png') | |
} | |
# image/normal/depth loader | |
for name, channel in zip(self.in_total, self.in_total_dim): | |
if name != 'image': | |
data_dict.update({ | |
f'{name}_path': | |
osp.join(self.root, subject_render, name, | |
f'{rotation:03d}.png') | |
}) | |
data_dict.update({ | |
name: | |
self.imagepath2tensor(data_dict[f'{name}_path'], | |
channel, | |
inv='depth_B' in name) | |
}) | |
path_keys = [ | |
key for key in data_dict.keys() if '_path' in key or '_dir' in key | |
] | |
for key in path_keys: | |
del data_dict[key] | |
return data_dict | |
def imagepath2tensor(self, path, channel=3, inv=False): | |
rgba = Image.open(path).convert('RGBA') | |
mask = rgba.split()[-1] | |
image = rgba.convert('RGB') | |
image = self.image_to_tensor(image) | |
mask = self.mask_to_tensor(mask) | |
image = (image * mask)[:channel] | |
return (image * (0.5 - inv) * 2.0).float() | |