ICON / lib /dataset /NormalDataset.py
Yuliang's picture
done
2d5f249
raw
history blame
7.27 kB
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import os.path as osp
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
class NormalDataset():
def __init__(self, cfg, split='train'):
self.split = split
self.root = cfg.root
self.overfit = cfg.overfit
self.opt = cfg.dataset
self.datasets = self.opt.types
self.input_size = self.opt.input_size
self.set_splits = self.opt.set_splits
self.scales = self.opt.scales
self.pifu = self.opt.pifu
# input data types and dimensions
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
self.in_total = self.in_nml + ['normal_F', 'normal_B']
self.in_total_dim = self.in_nml_dim + [3, 3]
if self.split != 'train':
self.rotations = range(0, 360, 120)
else:
self.rotations = np.arange(0, 360, 360 /
self.opt.rotation_num).astype(np.int)
self.datasets_dict = {}
for dataset_id, dataset in enumerate(self.datasets):
dataset_dir = osp.join(self.root, dataset, "smplx")
self.datasets_dict[dataset] = {
"subjects":
np.loadtxt(osp.join(self.root, dataset, "all.txt"), dtype=str),
"path":
dataset_dir,
"scale":
self.scales[dataset_id]
}
self.subject_list = self.get_subject_list(split)
# PIL to tensor
self.image_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# PIL to tensor
self.mask_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.0, ), (1.0, ))
])
def get_subject_list(self, split):
subject_list = []
for dataset in self.datasets:
if self.pifu:
txt = osp.join(self.root, dataset, f'{split}_pifu.txt')
else:
txt = osp.join(self.root, dataset, f'{split}.txt')
if osp.exists(txt):
print(f"load from {txt}")
subject_list += sorted(np.loadtxt(txt, dtype=str).tolist())
if self.pifu:
miss_pifu = sorted(
np.loadtxt(osp.join(self.root, dataset,
"miss_pifu.txt"),
dtype=str).tolist())
subject_list = [
subject for subject in subject_list
if subject not in miss_pifu
]
subject_list = [
"renderpeople/" + subject for subject in subject_list
]
else:
train_txt = osp.join(self.root, dataset, 'train.txt')
val_txt = osp.join(self.root, dataset, 'val.txt')
test_txt = osp.join(self.root, dataset, 'test.txt')
print(
f"generate lists of [train, val, test] \n {train_txt} \n {val_txt} \n {test_txt} \n"
)
split_txt = osp.join(self.root, dataset, f'{split}.txt')
subjects = self.datasets_dict[dataset]['subjects']
train_split = int(len(subjects) * self.set_splits[0])
val_split = int(
len(subjects) * self.set_splits[1]) + train_split
with open(train_txt, "w") as f:
f.write("\n".join(dataset + "/" + item
for item in subjects[:train_split]))
with open(val_txt, "w") as f:
f.write("\n".join(
dataset + "/" + item
for item in subjects[train_split:val_split]))
with open(test_txt, "w") as f:
f.write("\n".join(dataset + "/" + item
for item in subjects[val_split:]))
subject_list += sorted(
np.loadtxt(split_txt, dtype=str).tolist())
bug_list = sorted(
np.loadtxt(osp.join(self.root, 'bug.txt'), dtype=str).tolist())
subject_list = [
subject for subject in subject_list if (subject not in bug_list)
]
return subject_list
def __len__(self):
return len(self.subject_list) * len(self.rotations)
def __getitem__(self, index):
# only pick the first data if overfitting
if self.overfit:
index = 0
rid = index % len(self.rotations)
mid = index // len(self.rotations)
rotation = self.rotations[rid]
# choose specific test sets
subject = self.subject_list[mid]
subject_render = "/".join(
[subject.split("/")[0] + "_12views",
subject.split("/")[1]])
# setup paths
data_dict = {
'dataset':
subject.split("/")[0],
'subject':
subject,
'rotation':
rotation,
'image_path':
osp.join(self.root, subject_render, 'render',
f'{rotation:03d}.png')
}
# image/normal/depth loader
for name, channel in zip(self.in_total, self.in_total_dim):
if name != 'image':
data_dict.update({
f'{name}_path':
osp.join(self.root, subject_render, name,
f'{rotation:03d}.png')
})
data_dict.update({
name:
self.imagepath2tensor(data_dict[f'{name}_path'],
channel,
inv='depth_B' in name)
})
path_keys = [
key for key in data_dict.keys() if '_path' in key or '_dir' in key
]
for key in path_keys:
del data_dict[key]
return data_dict
def imagepath2tensor(self, path, channel=3, inv=False):
rgba = Image.open(path).convert('RGBA')
mask = rgba.split()[-1]
image = rgba.convert('RGB')
image = self.image_to_tensor(image)
mask = self.mask_to_tensor(mask)
image = (image * mask)[:channel]
return (image * (0.5 - inv) * 2.0).float()