Spaces:
Configuration error
Configuration error
Zhouyan248
commited on
Commit
•
166496c
1
Parent(s):
72584d7
Upload 118 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- Close-up-essence-is-poured-from-bottleKodak-Vision3-50_slow-motion_0000_001.mp4 +0 -0
- Close-up_essence_is_poured_from_bottleKodak_Vision.png +0 -0
- README.md +65 -12
- The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_11301.mp4 +0 -0
- The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_6600.mp4 +0 -0
- The_picture_shows_the_beauty_of_the_sea.png +0 -0
- The_picture_shows_the_beauty_of_the_sea_.jpg +0 -0
- __pycache__/download.cpython-310.pyc +0 -0
- __pycache__/download.cpython-311.pyc +0 -0
- __pycache__/download.cpython-39.pyc +0 -0
- __pycache__/utils.cpython-310.pyc +0 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- app.py +183 -0
- configs/sample_i2v.yaml +36 -0
- configs/sample_transition.yaml +33 -0
- datasets/__pycache__/video_transforms.cpython-311.pyc +0 -0
- datasets/__pycache__/video_transforms.cpython-39.pyc +0 -0
- datasets/video_transforms.py +472 -0
- diffusion/__init__.py +47 -0
- diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusion/__pycache__/__init__.cpython-311.pyc +0 -0
- diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- diffusion/__pycache__/diffusion_utils.cpython-310.pyc +0 -0
- diffusion/__pycache__/diffusion_utils.cpython-311.pyc +0 -0
- diffusion/__pycache__/diffusion_utils.cpython-38.pyc +0 -0
- diffusion/__pycache__/diffusion_utils.cpython-39.pyc +0 -0
- diffusion/__pycache__/gaussian_diffusion.cpython-310.pyc +0 -0
- diffusion/__pycache__/gaussian_diffusion.cpython-311.pyc +0 -0
- diffusion/__pycache__/gaussian_diffusion.cpython-38.pyc +0 -0
- diffusion/__pycache__/gaussian_diffusion.cpython-39.pyc +0 -0
- diffusion/__pycache__/respace.cpython-310.pyc +0 -0
- diffusion/__pycache__/respace.cpython-311.pyc +0 -0
- diffusion/__pycache__/respace.cpython-38.pyc +0 -0
- diffusion/__pycache__/respace.cpython-39.pyc +0 -0
- diffusion/diffusion_utils.py +88 -0
- diffusion/gaussian_diffusion.py +931 -0
- diffusion/respace.py +130 -0
- diffusion/timestep_sampler.py +150 -0
- download.py +44 -0
- env.yaml +20 -0
- huggingface-i2v/__init__.py +0 -0
- huggingface-i2v/requirements.txt +0 -0
- image_to_video/__init__.py +221 -0
- image_to_video/__pycache__/__init__.cpython-311.pyc +0 -0
- input/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png +0 -0
- input/i2v/The_picture_shows_the_beauty_of_the_sea.png +0 -0
- input/i2v/The_picture_shows_the_beauty_of_the_sea_and_at_the_same.png +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
input/transition/1/2-Wide[[:space:]]angle[[:space:]]shot[[:space:]]of[[:space:]]an[[:space:]]alien[[:space:]]planet[[:space:]]with[[:space:]]cherry[[:space:]]blossom[[:space:]]forest-2.png filter=lfs diff=lfs merge=lfs -text
|
Close-up-essence-is-poured-from-bottleKodak-Vision3-50_slow-motion_0000_001.mp4
ADDED
Binary file (301 kB). View file
|
|
Close-up_essence_is_poured_from_bottleKodak_Vision.png
ADDED
README.md
CHANGED
@@ -1,12 +1,65 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SEINE
|
2 |
+
This repository is the official implementation of [SEINE](https://arxiv.org/abs/2310.20700).
|
3 |
+
|
4 |
+
**[SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction](https://arxiv.org/abs/2310.20700)**
|
5 |
+
|
6 |
+
[Arxiv Report](https://arxiv.org/abs/2310.20700) | [Project Page](https://vchitect.github.io/SEINE-project/)
|
7 |
+
|
8 |
+
<img src="seine.gif" width="800">
|
9 |
+
|
10 |
+
|
11 |
+
## Setups for Inference
|
12 |
+
|
13 |
+
### Prepare Environment
|
14 |
+
```
|
15 |
+
conda env create -f env.yaml
|
16 |
+
conda activate seine
|
17 |
+
```
|
18 |
+
|
19 |
+
### Downlaod our model and T2I base model
|
20 |
+
Download our model checkpoint from [Google Drive](https://drive.google.com/drive/folders/1cWfeDzKJhpb0m6HA5DoMOH0_ItuUY95b?usp=sharing) and save to directory of ```pre-trained```
|
21 |
+
|
22 |
+
|
23 |
+
Our model is based on Stable diffusion v1.4, you may download [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) to the director of ``` pre-trained ```
|
24 |
+
|
25 |
+
Now under `./pretrained`, you should be able to see the following:
|
26 |
+
```
|
27 |
+
├── pretrained_models
|
28 |
+
│ ├── seine.pt
|
29 |
+
│ ├── stable-diffusion-v1-4
|
30 |
+
│ │ ├── ...
|
31 |
+
└── └── ├── ...
|
32 |
+
├── ...
|
33 |
+
```
|
34 |
+
|
35 |
+
#### Inference for I2V
|
36 |
+
```python
|
37 |
+
python sample_scripts/with_mask_sample.py --config configs/sample_i2v.yaml
|
38 |
+
```
|
39 |
+
The generated video will be saved in ```./results/i2v```.
|
40 |
+
|
41 |
+
#### Inference for Transition
|
42 |
+
```python
|
43 |
+
python sample_scripts/with_mask_sample.py --config configs/sample_transition.yaml
|
44 |
+
```
|
45 |
+
The generated video will be saved in ```./results/transition```.
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
#### More Details
|
50 |
+
You can modify ```./configs/sample_mask.yaml``` to change the generation conditions.
|
51 |
+
For example,
|
52 |
+
```ckpt``` is used to specify a model checkpoint.
|
53 |
+
```text_prompt``` is used to describe the content of the video.
|
54 |
+
```input_path``` is used to specify the path to the image.
|
55 |
+
|
56 |
+
|
57 |
+
## BibTeX
|
58 |
+
```bibtex
|
59 |
+
@article{chen2023seine,
|
60 |
+
title={SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction},
|
61 |
+
author={Chen, Xinyuan and Wang, Yaohui and Zhang, Lingjun and Zhuang, Shaobin and Ma, Xin and Yu, Jiashuo and Wang, Yali and Lin, Dahua and Qiao, Yu and Liu, Ziwei},
|
62 |
+
journal={arXiv preprint arXiv:2310.20700},
|
63 |
+
year={2023}
|
64 |
+
}
|
65 |
+
```
|
The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_11301.mp4
ADDED
Binary file (397 kB). View file
|
|
The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_6600.mp4
ADDED
Binary file (439 kB). View file
|
|
The_picture_shows_the_beauty_of_the_sea.png
ADDED
The_picture_shows_the_beauty_of_the_sea_.jpg
ADDED
__pycache__/download.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
__pycache__/download.cpython-311.pyc
ADDED
Binary file (1.85 kB). View file
|
|
__pycache__/download.cpython-39.pyc
ADDED
Binary file (1.29 kB). View file
|
|
__pycache__/utils.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
__pycache__/utils.cpython-311.pyc
ADDED
Binary file (19.2 kB). View file
|
|
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (10.5 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
import torch
|
5 |
+
from diffusers.utils.import_utils import is_xformers_available
|
6 |
+
import torchvision
|
7 |
+
from utils import mask_generation_before
|
8 |
+
import os
|
9 |
+
import cv2
|
10 |
+
|
11 |
+
config_path = "/mnt/petrelfs/zhouyan/project/i2v/configs/sample_i2v.yaml"
|
12 |
+
args = OmegaConf.load(config_path)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
# ------- get model ---------------
|
16 |
+
# model_i2V = model_i2v_fun()
|
17 |
+
# model_i2V.to("cuda")
|
18 |
+
|
19 |
+
# vae, model, text_encoder, diffusion = model_i2v_fun(args)
|
20 |
+
# vae.to(device)
|
21 |
+
# model.to(device)
|
22 |
+
# text_encoder.to(device)
|
23 |
+
|
24 |
+
# if args.use_fp16:
|
25 |
+
# vae.to(dtype=torch.float16)
|
26 |
+
# model.to(dtype=torch.float16)
|
27 |
+
# text_encoder.to(dtype=torch.float16)
|
28 |
+
|
29 |
+
# if args.enable_xformers_memory_efficient_attention and device=="cuda":
|
30 |
+
# if is_xformers_available():
|
31 |
+
# model.enable_xformers_memory_efficient_attention()
|
32 |
+
# else:
|
33 |
+
# raise ValueError("xformers is not available. Make sure it is installed correctly")
|
34 |
+
|
35 |
+
|
36 |
+
css = """
|
37 |
+
h1 {
|
38 |
+
text-align: center;
|
39 |
+
}
|
40 |
+
#component-0 {
|
41 |
+
max-width: 730px;
|
42 |
+
margin: auto;
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
|
46 |
+
def infer(prompt, image_inp, seed_inp, ddim_steps):
|
47 |
+
setup_seed(seed_inp)
|
48 |
+
args.num_sampling_steps = ddim_steps
|
49 |
+
###先测试Image的返回类型
|
50 |
+
print(prompt, seed_inp, ddim_steps, type(image_inp))
|
51 |
+
img = cv2.imread(image_inp)
|
52 |
+
new_size = [img.shape[0],img.shape[1]]
|
53 |
+
# if(img.shape[0]==512 and img.shape[1]==512):
|
54 |
+
# args.image_size = [512,512]
|
55 |
+
# elif(img.shape[0]==320 and img.shape[1]==512):
|
56 |
+
# args.image_size = [320, 512]
|
57 |
+
# elif(img.shape[0]==292 and img.shape[1]==512):
|
58 |
+
# args.image_size = [292,512]
|
59 |
+
# else:
|
60 |
+
# raise ValueError("Please enter image of right size")
|
61 |
+
# print(args.image_size)
|
62 |
+
args.image_size = new_size
|
63 |
+
|
64 |
+
vae, model, text_encoder, diffusion = model_i2v_fun(args)
|
65 |
+
vae.to(device)
|
66 |
+
model.to(device)
|
67 |
+
text_encoder.to(device)
|
68 |
+
|
69 |
+
if args.use_fp16:
|
70 |
+
vae.to(dtype=torch.float16)
|
71 |
+
model.to(dtype=torch.float16)
|
72 |
+
text_encoder.to(dtype=torch.float16)
|
73 |
+
|
74 |
+
if args.enable_xformers_memory_efficient_attention and device=="cuda":
|
75 |
+
if is_xformers_available():
|
76 |
+
model.enable_xformers_memory_efficient_attention()
|
77 |
+
else:
|
78 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
79 |
+
|
80 |
+
|
81 |
+
video_input, reserve_frames = get_input(image_inp, args)
|
82 |
+
video_input = video_input.to(device).unsqueeze(0)
|
83 |
+
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device)
|
84 |
+
masked_video = video_input * (mask == 0)
|
85 |
+
prompt = "tilt up, high quality, stable "
|
86 |
+
prompt = prompt + args.additional_prompt
|
87 |
+
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
|
88 |
+
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
|
89 |
+
torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
# video = model_i2V(prompt, image_inp, seed_inp, ddim_steps)
|
94 |
+
|
95 |
+
return os.path.join(args.save_img_path, prompt+ '.mp4')
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
def clean():
|
100 |
+
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
|
101 |
+
return gr.Video.update(value=None)
|
102 |
+
|
103 |
+
|
104 |
+
title = """
|
105 |
+
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
106 |
+
<div
|
107 |
+
style="
|
108 |
+
display: inline-flex;
|
109 |
+
align-items: center;
|
110 |
+
gap: 0.8rem;
|
111 |
+
font-size: 1.75rem;
|
112 |
+
"
|
113 |
+
>
|
114 |
+
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
|
115 |
+
SEINE: Image-to-Video generation
|
116 |
+
</h1>
|
117 |
+
</div>
|
118 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
119 |
+
Apply SEINE to generate a video
|
120 |
+
</p>
|
121 |
+
</div>
|
122 |
+
"""
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
with gr.Blocks(css='style.css') as demo:
|
127 |
+
gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>")
|
128 |
+
with gr.Column(elem_id="col-container"):
|
129 |
+
# gr.HTML(title)
|
130 |
+
|
131 |
+
with gr.Row():
|
132 |
+
with gr.Column():
|
133 |
+
image_inp = gr.Image(type='filepath')
|
134 |
+
|
135 |
+
with gr.Column():
|
136 |
+
|
137 |
+
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
# control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
|
141 |
+
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
|
142 |
+
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in")
|
143 |
+
|
144 |
+
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
submit_btn = gr.Button("Generate video")
|
149 |
+
clean_btn = gr.Button("Clean video")
|
150 |
+
|
151 |
+
video_out = gr.Video(label="Video result", elem_id="video-output", width = 800)
|
152 |
+
inputs = [prompt,image_inp, seed_inp, ddim_steps]
|
153 |
+
outputs = [video_out]
|
154 |
+
ex = gr.Examples(
|
155 |
+
examples = [["/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea_.jpg","A video of the beauty of the sea",123,50],
|
156 |
+
["/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",123,50],
|
157 |
+
["/mnt/petrelfs/zhouyan/project/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottleKodak Vision",123,50]],
|
158 |
+
fn = infer,
|
159 |
+
inputs = [image_inp, prompt, seed_inp, ddim_steps],
|
160 |
+
outputs=[video_out],
|
161 |
+
cache_examples=False
|
162 |
+
|
163 |
+
|
164 |
+
)
|
165 |
+
ex.dataset.headers = [""]
|
166 |
+
# gr.Markdown("<center>some examples</center>")
|
167 |
+
# with gr.Row():
|
168 |
+
# gr.Image(value="/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea_.jpg")
|
169 |
+
# gr.Image(value="/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea.png")
|
170 |
+
# gr.Image(value="/mnt/petrelfs/zhouyan/project/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png")
|
171 |
+
# with gr.Row():
|
172 |
+
# gr.Video(value="/mnt/petrelfs/zhouyan/project/i2v/The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_11301.mp4")
|
173 |
+
# gr.Video(value="/mnt/petrelfs/zhouyan/project/i2v/The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_6600.mp4")
|
174 |
+
# gr.Video(value="/mnt/petrelfs/zhouyan/project/i2v/Close-up-essence-is-poured-from-bottleKodak-Vision3-50_slow-motion_0000_001.mp4")
|
175 |
+
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
|
176 |
+
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
|
177 |
+
submit_btn.click(infer, inputs, outputs)
|
178 |
+
# share_button.click(None, [], [], _js=share_js)
|
179 |
+
|
180 |
+
|
181 |
+
demo.queue(max_size=12).launch(server_name="0.0.0.0",server_port=7861)
|
182 |
+
|
183 |
+
|
configs/sample_i2v.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
ckpt: "/mnt/petrelfs/share_data/chenxinyuan/code/SEINE-release/pre-trained/seine.pt"
|
3 |
+
# save_img_path: "./results/i2v/"
|
4 |
+
save_img_path: "/mnt/petrelfs/share_data/zhouyan/gradio_i2v/"
|
5 |
+
pretrained_model_path: "pre-trained/stable-diffusion-v1-4/"
|
6 |
+
|
7 |
+
# model config:
|
8 |
+
model: TAVU
|
9 |
+
num_frames: 16
|
10 |
+
frame_interval: 1
|
11 |
+
image_size: [512, 512]
|
12 |
+
#image_size: [320, 512]
|
13 |
+
# image_size: [512, 512]
|
14 |
+
|
15 |
+
# model speedup
|
16 |
+
use_compile: False
|
17 |
+
use_fp16: True
|
18 |
+
enable_xformers_memory_efficient_attention: True
|
19 |
+
img_path: "/mnt/petrelfs/zhouyan/tmp/last"
|
20 |
+
# sample config:
|
21 |
+
seed:
|
22 |
+
run_time: 13
|
23 |
+
cfg_scale: 8.0
|
24 |
+
sample_method: 'ddpm'
|
25 |
+
num_sampling_steps: 250
|
26 |
+
text_prompt: ["slow motion"]
|
27 |
+
additional_prompt: ", slow motion."
|
28 |
+
negative_prompt: ""
|
29 |
+
do_classifier_free_guidance: True
|
30 |
+
|
31 |
+
# autoregressive config:
|
32 |
+
# input_path: "/mnt/petrelfs/zhouyan/tmp/未来上海/WechatIMG9434.jpg"
|
33 |
+
input_path: "/mnt/petrelfs/zhouyan/tmp/last"
|
34 |
+
researve_frame: 1
|
35 |
+
mask_type: "first1"
|
36 |
+
use_mask: True
|
configs/sample_transition.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
ckpt: "pre-trained/0020000.pt"
|
3 |
+
save_img_path: "./results/transition/"
|
4 |
+
pretrained_model_path: "pre-trained/stable-diffusion-v1-4/"
|
5 |
+
|
6 |
+
# model config:
|
7 |
+
model: TAVU
|
8 |
+
num_frames: 16
|
9 |
+
frame_interval: 1
|
10 |
+
#image_size: [240, 560]
|
11 |
+
#image_size: [320, 512]
|
12 |
+
image_size: [512, 512]
|
13 |
+
|
14 |
+
# model speedup
|
15 |
+
use_compile: False
|
16 |
+
use_fp16: True
|
17 |
+
enable_xformers_memory_efficient_attention: True
|
18 |
+
|
19 |
+
# sample config:
|
20 |
+
seed:
|
21 |
+
run_time: 13
|
22 |
+
cfg_scale: 8.0
|
23 |
+
sample_method: 'ddpm'
|
24 |
+
num_sampling_steps: 250
|
25 |
+
text_prompt: ['smooth transition']
|
26 |
+
additional_prompt: "smooth transition."
|
27 |
+
negative_prompt: ""
|
28 |
+
do_classifier_free_guidance: True
|
29 |
+
|
30 |
+
# autoregressive config:
|
31 |
+
input_path: 'input/transition/1'
|
32 |
+
mask_type: "onelast1"
|
33 |
+
use_mask: True
|
datasets/__pycache__/video_transforms.cpython-311.pyc
ADDED
Binary file (23.3 kB). View file
|
|
datasets/__pycache__/video_transforms.cpython-39.pyc
ADDED
Binary file (14.8 kB). View file
|
|
datasets/video_transforms.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import random
|
3 |
+
import numbers
|
4 |
+
from torchvision.transforms import RandomCrop, RandomResizedCrop
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
def _is_tensor_video_clip(clip):
|
8 |
+
if not torch.is_tensor(clip):
|
9 |
+
raise TypeError("clip should be Tensor. Got %s" % type(clip))
|
10 |
+
|
11 |
+
if not clip.ndimension() == 4:
|
12 |
+
raise ValueError("clip should be 4D. Got %dD" % clip.dim())
|
13 |
+
|
14 |
+
return True
|
15 |
+
|
16 |
+
|
17 |
+
def center_crop_arr(pil_image, image_size):
|
18 |
+
"""
|
19 |
+
Center cropping implementation from ADM.
|
20 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
21 |
+
"""
|
22 |
+
while min(*pil_image.size) >= 2 * image_size:
|
23 |
+
pil_image = pil_image.resize(
|
24 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
|
25 |
+
)
|
26 |
+
|
27 |
+
scale = image_size / min(*pil_image.size)
|
28 |
+
pil_image = pil_image.resize(
|
29 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
|
30 |
+
)
|
31 |
+
|
32 |
+
arr = np.array(pil_image)
|
33 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
34 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
35 |
+
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
|
36 |
+
|
37 |
+
|
38 |
+
def crop(clip, i, j, h, w):
|
39 |
+
"""
|
40 |
+
Args:
|
41 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
42 |
+
"""
|
43 |
+
if len(clip.size()) != 4:
|
44 |
+
raise ValueError("clip should be a 4D tensor")
|
45 |
+
return clip[..., i : i + h, j : j + w]
|
46 |
+
|
47 |
+
|
48 |
+
def resize(clip, target_size, interpolation_mode):
|
49 |
+
if len(target_size) != 2:
|
50 |
+
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
|
51 |
+
return torch.nn.functional.interpolate(clip, size=target_size, mode=interpolation_mode, align_corners=False)
|
52 |
+
|
53 |
+
def resize_scale(clip, target_size, interpolation_mode):
|
54 |
+
if len(target_size) != 2:
|
55 |
+
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
|
56 |
+
H, W = clip.size(-2), clip.size(-1)
|
57 |
+
scale_ = target_size[0] / min(H, W)
|
58 |
+
return torch.nn.functional.interpolate(clip, scale_factor=scale_, mode=interpolation_mode, align_corners=False)
|
59 |
+
|
60 |
+
def resize_with_scale_factor(clip, scale_factor, interpolation_mode):
|
61 |
+
return torch.nn.functional.interpolate(clip, scale_factor=scale_factor, mode=interpolation_mode, align_corners=False)
|
62 |
+
|
63 |
+
def resize_scale_with_height(clip, target_size, interpolation_mode):
|
64 |
+
H, W = clip.size(-2), clip.size(-1)
|
65 |
+
scale_ = target_size / H
|
66 |
+
return torch.nn.functional.interpolate(clip, scale_factor=scale_, mode=interpolation_mode, align_corners=False)
|
67 |
+
|
68 |
+
def resize_scale_with_weight(clip, target_size, interpolation_mode):
|
69 |
+
H, W = clip.size(-2), clip.size(-1)
|
70 |
+
scale_ = target_size / W
|
71 |
+
return torch.nn.functional.interpolate(clip, scale_factor=scale_, mode=interpolation_mode, align_corners=False)
|
72 |
+
|
73 |
+
|
74 |
+
def resized_crop(clip, i, j, h, w, size, interpolation_mode="bilinear"):
|
75 |
+
"""
|
76 |
+
Do spatial cropping and resizing to the video clip
|
77 |
+
Args:
|
78 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
79 |
+
i (int): i in (i,j) i.e coordinates of the upper left corner.
|
80 |
+
j (int): j in (i,j) i.e coordinates of the upper left corner.
|
81 |
+
h (int): Height of the cropped region.
|
82 |
+
w (int): Width of the cropped region.
|
83 |
+
size (tuple(int, int)): height and width of resized clip
|
84 |
+
Returns:
|
85 |
+
clip (torch.tensor): Resized and cropped clip. Size is (T, C, H, W)
|
86 |
+
"""
|
87 |
+
if not _is_tensor_video_clip(clip):
|
88 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
89 |
+
clip = crop(clip, i, j, h, w)
|
90 |
+
clip = resize(clip, size, interpolation_mode)
|
91 |
+
return clip
|
92 |
+
|
93 |
+
|
94 |
+
def center_crop(clip, crop_size):
|
95 |
+
if not _is_tensor_video_clip(clip):
|
96 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
97 |
+
h, w = clip.size(-2), clip.size(-1)
|
98 |
+
# print(clip.shape)
|
99 |
+
th, tw = crop_size
|
100 |
+
if h < th or w < tw:
|
101 |
+
# print(h, w)
|
102 |
+
raise ValueError("height {} and width {} must be no smaller than crop_size".format(h, w))
|
103 |
+
|
104 |
+
i = int(round((h - th) / 2.0))
|
105 |
+
j = int(round((w - tw) / 2.0))
|
106 |
+
return crop(clip, i, j, th, tw)
|
107 |
+
|
108 |
+
|
109 |
+
def center_crop_using_short_edge(clip):
|
110 |
+
if not _is_tensor_video_clip(clip):
|
111 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
112 |
+
h, w = clip.size(-2), clip.size(-1)
|
113 |
+
if h < w:
|
114 |
+
th, tw = h, h
|
115 |
+
i = 0
|
116 |
+
j = int(round((w - tw) / 2.0))
|
117 |
+
else:
|
118 |
+
th, tw = w, w
|
119 |
+
i = int(round((h - th) / 2.0))
|
120 |
+
j = 0
|
121 |
+
return crop(clip, i, j, th, tw)
|
122 |
+
|
123 |
+
|
124 |
+
def random_shift_crop(clip):
|
125 |
+
'''
|
126 |
+
Slide along the long edge, with the short edge as crop size
|
127 |
+
'''
|
128 |
+
if not _is_tensor_video_clip(clip):
|
129 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
130 |
+
h, w = clip.size(-2), clip.size(-1)
|
131 |
+
|
132 |
+
if h <= w:
|
133 |
+
long_edge = w
|
134 |
+
short_edge = h
|
135 |
+
else:
|
136 |
+
long_edge = h
|
137 |
+
short_edge =w
|
138 |
+
|
139 |
+
th, tw = short_edge, short_edge
|
140 |
+
|
141 |
+
i = torch.randint(0, h - th + 1, size=(1,)).item()
|
142 |
+
j = torch.randint(0, w - tw + 1, size=(1,)).item()
|
143 |
+
return crop(clip, i, j, th, tw)
|
144 |
+
|
145 |
+
|
146 |
+
def to_tensor(clip):
|
147 |
+
"""
|
148 |
+
Convert tensor data type from uint8 to float, divide value by 255.0 and
|
149 |
+
permute the dimensions of clip tensor
|
150 |
+
Args:
|
151 |
+
clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
|
152 |
+
Return:
|
153 |
+
clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
|
154 |
+
"""
|
155 |
+
_is_tensor_video_clip(clip)
|
156 |
+
if not clip.dtype == torch.uint8:
|
157 |
+
raise TypeError("clip tensor should have data type uint8. Got %s" % str(clip.dtype))
|
158 |
+
# return clip.float().permute(3, 0, 1, 2) / 255.0
|
159 |
+
return clip.float() / 255.0
|
160 |
+
|
161 |
+
|
162 |
+
def normalize(clip, mean, std, inplace=False):
|
163 |
+
"""
|
164 |
+
Args:
|
165 |
+
clip (torch.tensor): Video clip to be normalized. Size is (T, C, H, W)
|
166 |
+
mean (tuple): pixel RGB mean. Size is (3)
|
167 |
+
std (tuple): pixel standard deviation. Size is (3)
|
168 |
+
Returns:
|
169 |
+
normalized clip (torch.tensor): Size is (T, C, H, W)
|
170 |
+
"""
|
171 |
+
if not _is_tensor_video_clip(clip):
|
172 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
173 |
+
if not inplace:
|
174 |
+
clip = clip.clone()
|
175 |
+
mean = torch.as_tensor(mean, dtype=clip.dtype, device=clip.device)
|
176 |
+
# print(mean)
|
177 |
+
std = torch.as_tensor(std, dtype=clip.dtype, device=clip.device)
|
178 |
+
clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None])
|
179 |
+
return clip
|
180 |
+
|
181 |
+
|
182 |
+
def hflip(clip):
|
183 |
+
"""
|
184 |
+
Args:
|
185 |
+
clip (torch.tensor): Video clip to be normalized. Size is (T, C, H, W)
|
186 |
+
Returns:
|
187 |
+
flipped clip (torch.tensor): Size is (T, C, H, W)
|
188 |
+
"""
|
189 |
+
if not _is_tensor_video_clip(clip):
|
190 |
+
raise ValueError("clip should be a 4D torch.tensor")
|
191 |
+
return clip.flip(-1)
|
192 |
+
|
193 |
+
|
194 |
+
class RandomCropVideo:
|
195 |
+
def __init__(self, size):
|
196 |
+
if isinstance(size, numbers.Number):
|
197 |
+
self.size = (int(size), int(size))
|
198 |
+
else:
|
199 |
+
self.size = size
|
200 |
+
|
201 |
+
def __call__(self, clip):
|
202 |
+
"""
|
203 |
+
Args:
|
204 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
205 |
+
Returns:
|
206 |
+
torch.tensor: randomly cropped video clip.
|
207 |
+
size is (T, C, OH, OW)
|
208 |
+
"""
|
209 |
+
i, j, h, w = self.get_params(clip)
|
210 |
+
return crop(clip, i, j, h, w)
|
211 |
+
|
212 |
+
def get_params(self, clip):
|
213 |
+
h, w = clip.shape[-2:]
|
214 |
+
th, tw = self.size
|
215 |
+
|
216 |
+
if h < th or w < tw:
|
217 |
+
raise ValueError(f"Required crop size {(th, tw)} is larger than input image size {(h, w)}")
|
218 |
+
|
219 |
+
if w == tw and h == th:
|
220 |
+
return 0, 0, h, w
|
221 |
+
|
222 |
+
i = torch.randint(0, h - th + 1, size=(1,)).item()
|
223 |
+
j = torch.randint(0, w - tw + 1, size=(1,)).item()
|
224 |
+
|
225 |
+
return i, j, th, tw
|
226 |
+
|
227 |
+
def __repr__(self) -> str:
|
228 |
+
return f"{self.__class__.__name__}(size={self.size})"
|
229 |
+
|
230 |
+
class CenterCropResizeVideo:
|
231 |
+
'''
|
232 |
+
First use the short side for cropping length,
|
233 |
+
center crop video, then resize to the specified size
|
234 |
+
'''
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
size,
|
238 |
+
interpolation_mode="bilinear",
|
239 |
+
):
|
240 |
+
if isinstance(size, tuple):
|
241 |
+
if len(size) != 2:
|
242 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
243 |
+
self.size = size
|
244 |
+
else:
|
245 |
+
self.size = (size, size)
|
246 |
+
|
247 |
+
self.interpolation_mode = interpolation_mode
|
248 |
+
|
249 |
+
|
250 |
+
def __call__(self, clip):
|
251 |
+
"""
|
252 |
+
Args:
|
253 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
254 |
+
Returns:
|
255 |
+
torch.tensor: scale resized / center cropped video clip.
|
256 |
+
size is (T, C, crop_size, crop_size)
|
257 |
+
"""
|
258 |
+
# print(clip.shape)
|
259 |
+
clip_center_crop = center_crop_using_short_edge(clip)
|
260 |
+
# print(clip_center_crop.shape) 320 512
|
261 |
+
clip_center_crop_resize = resize(clip_center_crop, target_size=self.size, interpolation_mode=self.interpolation_mode)
|
262 |
+
return clip_center_crop_resize
|
263 |
+
|
264 |
+
def __repr__(self) -> str:
|
265 |
+
return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"
|
266 |
+
|
267 |
+
class WebVideo320512:
|
268 |
+
def __init__(
|
269 |
+
self,
|
270 |
+
size,
|
271 |
+
interpolation_mode="bilinear",
|
272 |
+
):
|
273 |
+
if isinstance(size, tuple):
|
274 |
+
if len(size) != 2:
|
275 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
276 |
+
self.size = size
|
277 |
+
else:
|
278 |
+
self.size = (size, size)
|
279 |
+
|
280 |
+
self.interpolation_mode = interpolation_mode
|
281 |
+
|
282 |
+
|
283 |
+
def __call__(self, clip):
|
284 |
+
"""
|
285 |
+
Args:
|
286 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
287 |
+
Returns:
|
288 |
+
torch.tensor: scale resized / center cropped video clip.
|
289 |
+
size is (T, C, crop_size, crop_size)
|
290 |
+
"""
|
291 |
+
# add aditional one pixel for avoiding error in center crop
|
292 |
+
h, w = clip.size(-2), clip.size(-1)
|
293 |
+
# print('before resize', clip.shape)
|
294 |
+
if h < 320:
|
295 |
+
clip = resize_scale_with_height(clip=clip, target_size=321, interpolation_mode=self.interpolation_mode)
|
296 |
+
# print('after h resize', clip.shape)
|
297 |
+
if w < 512:
|
298 |
+
clip = resize_scale_with_weight(clip=clip, target_size=513, interpolation_mode=self.interpolation_mode)
|
299 |
+
# print('after w resize', clip.shape)
|
300 |
+
clip_center_crop = center_crop(clip, self.size)
|
301 |
+
# print(clip_center_crop.shape)
|
302 |
+
return clip_center_crop
|
303 |
+
|
304 |
+
def __repr__(self) -> str:
|
305 |
+
return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"
|
306 |
+
|
307 |
+
class UCFCenterCropVideo:
|
308 |
+
'''
|
309 |
+
First scale to the specified size in equal proportion to the short edge,
|
310 |
+
then center cropping
|
311 |
+
'''
|
312 |
+
def __init__(
|
313 |
+
self,
|
314 |
+
size,
|
315 |
+
interpolation_mode="bilinear",
|
316 |
+
):
|
317 |
+
if isinstance(size, tuple):
|
318 |
+
if len(size) != 2:
|
319 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
320 |
+
self.size = size
|
321 |
+
else:
|
322 |
+
self.size = (size, size)
|
323 |
+
|
324 |
+
self.interpolation_mode = interpolation_mode
|
325 |
+
|
326 |
+
|
327 |
+
def __call__(self, clip):
|
328 |
+
"""
|
329 |
+
Args:
|
330 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
331 |
+
Returns:
|
332 |
+
torch.tensor: scale resized / center cropped video clip.
|
333 |
+
size is (T, C, crop_size, crop_size)
|
334 |
+
"""
|
335 |
+
clip_resize = resize_scale(clip=clip, target_size=self.size, interpolation_mode=self.interpolation_mode)
|
336 |
+
clip_center_crop = center_crop(clip_resize, self.size)
|
337 |
+
return clip_center_crop
|
338 |
+
|
339 |
+
def __repr__(self) -> str:
|
340 |
+
return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"
|
341 |
+
|
342 |
+
|
343 |
+
class CenterCropVideo:
|
344 |
+
def __init__(
|
345 |
+
self,
|
346 |
+
size,
|
347 |
+
interpolation_mode="bilinear",
|
348 |
+
):
|
349 |
+
if isinstance(size, tuple):
|
350 |
+
if len(size) != 2:
|
351 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
352 |
+
self.size = size
|
353 |
+
else:
|
354 |
+
self.size = (size, size)
|
355 |
+
|
356 |
+
self.interpolation_mode = interpolation_mode
|
357 |
+
|
358 |
+
|
359 |
+
def __call__(self, clip):
|
360 |
+
"""
|
361 |
+
Args:
|
362 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
363 |
+
Returns:
|
364 |
+
torch.tensor: center cropped video clip.
|
365 |
+
size is (T, C, crop_size, crop_size)
|
366 |
+
"""
|
367 |
+
clip_center_crop = center_crop(clip, self.size)
|
368 |
+
return clip_center_crop
|
369 |
+
|
370 |
+
def __repr__(self) -> str:
|
371 |
+
return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"
|
372 |
+
|
373 |
+
|
374 |
+
class NormalizeVideo:
|
375 |
+
"""
|
376 |
+
Normalize the video clip by mean subtraction and division by standard deviation
|
377 |
+
Args:
|
378 |
+
mean (3-tuple): pixel RGB mean
|
379 |
+
std (3-tuple): pixel RGB standard deviation
|
380 |
+
inplace (boolean): whether do in-place normalization
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(self, mean, std, inplace=False):
|
384 |
+
self.mean = mean
|
385 |
+
self.std = std
|
386 |
+
self.inplace = inplace
|
387 |
+
|
388 |
+
def __call__(self, clip):
|
389 |
+
"""
|
390 |
+
Args:
|
391 |
+
clip (torch.tensor): video clip must be normalized. Size is (C, T, H, W)
|
392 |
+
"""
|
393 |
+
return normalize(clip, self.mean, self.std, self.inplace)
|
394 |
+
|
395 |
+
def __repr__(self) -> str:
|
396 |
+
return f"{self.__class__.__name__}(mean={self.mean}, std={self.std}, inplace={self.inplace})"
|
397 |
+
|
398 |
+
|
399 |
+
class ToTensorVideo:
|
400 |
+
"""
|
401 |
+
Convert tensor data type from uint8 to float, divide value by 255.0 and
|
402 |
+
permute the dimensions of clip tensor
|
403 |
+
"""
|
404 |
+
|
405 |
+
def __init__(self):
|
406 |
+
pass
|
407 |
+
|
408 |
+
def __call__(self, clip):
|
409 |
+
"""
|
410 |
+
Args:
|
411 |
+
clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W)
|
412 |
+
Return:
|
413 |
+
clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W)
|
414 |
+
"""
|
415 |
+
return to_tensor(clip)
|
416 |
+
|
417 |
+
def __repr__(self) -> str:
|
418 |
+
return self.__class__.__name__
|
419 |
+
|
420 |
+
|
421 |
+
class ResizeVideo():
|
422 |
+
'''
|
423 |
+
First use the short side for cropping length,
|
424 |
+
center crop video, then resize to the specified size
|
425 |
+
'''
|
426 |
+
def __init__(
|
427 |
+
self,
|
428 |
+
size,
|
429 |
+
interpolation_mode="bilinear",
|
430 |
+
):
|
431 |
+
if isinstance(size, tuple):
|
432 |
+
if len(size) != 2:
|
433 |
+
raise ValueError(f"size should be tuple (height, width), instead got {size}")
|
434 |
+
self.size = size
|
435 |
+
else:
|
436 |
+
self.size = (size, size)
|
437 |
+
|
438 |
+
self.interpolation_mode = interpolation_mode
|
439 |
+
|
440 |
+
|
441 |
+
def __call__(self, clip):
|
442 |
+
"""
|
443 |
+
Args:
|
444 |
+
clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W)
|
445 |
+
Returns:
|
446 |
+
torch.tensor: scale resized / center cropped video clip.
|
447 |
+
size is (T, C, crop_size, crop_size)
|
448 |
+
"""
|
449 |
+
clip_resize = resize(clip, target_size=self.size, interpolation_mode=self.interpolation_mode)
|
450 |
+
return clip_resize
|
451 |
+
|
452 |
+
def __repr__(self) -> str:
|
453 |
+
return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}"
|
454 |
+
|
455 |
+
# ------------------------------------------------------------
|
456 |
+
# --------------------- Sampling ---------------------------
|
457 |
+
# ------------------------------------------------------------
|
458 |
+
class TemporalRandomCrop(object):
|
459 |
+
"""Temporally crop the given frame indices at a random location.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
size (int): Desired length of frames will be seen in the model.
|
463 |
+
"""
|
464 |
+
|
465 |
+
def __init__(self, size):
|
466 |
+
self.size = size
|
467 |
+
|
468 |
+
def __call__(self, total_frames):
|
469 |
+
rand_end = max(0, total_frames - self.size - 1)
|
470 |
+
begin_index = random.randint(0, rand_end)
|
471 |
+
end_index = min(begin_index + self.size, total_frames)
|
472 |
+
return begin_index, end_index
|
diffusion/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
from . import gaussian_diffusion as gd
|
7 |
+
from .respace import SpacedDiffusion, space_timesteps
|
8 |
+
|
9 |
+
|
10 |
+
def create_diffusion(
|
11 |
+
timestep_respacing,
|
12 |
+
noise_schedule="linear",
|
13 |
+
use_kl=False,
|
14 |
+
sigma_small=False,
|
15 |
+
predict_xstart=False,
|
16 |
+
# learn_sigma=True,
|
17 |
+
learn_sigma=False, # for unet
|
18 |
+
rescale_learned_sigmas=False,
|
19 |
+
diffusion_steps=1000
|
20 |
+
):
|
21 |
+
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
|
22 |
+
if use_kl:
|
23 |
+
loss_type = gd.LossType.RESCALED_KL
|
24 |
+
elif rescale_learned_sigmas:
|
25 |
+
loss_type = gd.LossType.RESCALED_MSE
|
26 |
+
else:
|
27 |
+
loss_type = gd.LossType.MSE
|
28 |
+
if timestep_respacing is None or timestep_respacing == "":
|
29 |
+
timestep_respacing = [diffusion_steps]
|
30 |
+
return SpacedDiffusion(
|
31 |
+
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
|
32 |
+
betas=betas,
|
33 |
+
model_mean_type=(
|
34 |
+
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
|
35 |
+
),
|
36 |
+
model_var_type=(
|
37 |
+
(
|
38 |
+
gd.ModelVarType.FIXED_LARGE
|
39 |
+
if not sigma_small
|
40 |
+
else gd.ModelVarType.FIXED_SMALL
|
41 |
+
)
|
42 |
+
if not learn_sigma
|
43 |
+
else gd.ModelVarType.LEARNED_RANGE
|
44 |
+
),
|
45 |
+
loss_type=loss_type
|
46 |
+
# rescale_timesteps=rescale_timesteps,
|
47 |
+
)
|
diffusion/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
diffusion/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (1.53 kB). View file
|
|
diffusion/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (997 Bytes). View file
|
|
diffusion/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (975 Bytes). View file
|
|
diffusion/__pycache__/diffusion_utils.cpython-310.pyc
ADDED
Binary file (2.83 kB). View file
|
|
diffusion/__pycache__/diffusion_utils.cpython-311.pyc
ADDED
Binary file (4.59 kB). View file
|
|
diffusion/__pycache__/diffusion_utils.cpython-38.pyc
ADDED
Binary file (2.87 kB). View file
|
|
diffusion/__pycache__/diffusion_utils.cpython-39.pyc
ADDED
Binary file (2.83 kB). View file
|
|
diffusion/__pycache__/gaussian_diffusion.cpython-310.pyc
ADDED
Binary file (25 kB). View file
|
|
diffusion/__pycache__/gaussian_diffusion.cpython-311.pyc
ADDED
Binary file (40.5 kB). View file
|
|
diffusion/__pycache__/gaussian_diffusion.cpython-38.pyc
ADDED
Binary file (25 kB). View file
|
|
diffusion/__pycache__/gaussian_diffusion.cpython-39.pyc
ADDED
Binary file (24.9 kB). View file
|
|
diffusion/__pycache__/respace.cpython-310.pyc
ADDED
Binary file (4.98 kB). View file
|
|
diffusion/__pycache__/respace.cpython-311.pyc
ADDED
Binary file (7.78 kB). View file
|
|
diffusion/__pycache__/respace.cpython-38.pyc
ADDED
Binary file (5.06 kB). View file
|
|
diffusion/__pycache__/respace.cpython-39.pyc
ADDED
Binary file (5.07 kB). View file
|
|
diffusion/diffusion_utils.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import torch as th
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
11 |
+
"""
|
12 |
+
Compute the KL divergence between two gaussians.
|
13 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
14 |
+
scalars, among other use cases.
|
15 |
+
"""
|
16 |
+
tensor = None
|
17 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
18 |
+
if isinstance(obj, th.Tensor):
|
19 |
+
tensor = obj
|
20 |
+
break
|
21 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
22 |
+
|
23 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
24 |
+
# Tensors, but it does not work for th.exp().
|
25 |
+
logvar1, logvar2 = [
|
26 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
27 |
+
for x in (logvar1, logvar2)
|
28 |
+
]
|
29 |
+
|
30 |
+
return 0.5 * (
|
31 |
+
-1.0
|
32 |
+
+ logvar2
|
33 |
+
- logvar1
|
34 |
+
+ th.exp(logvar1 - logvar2)
|
35 |
+
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def approx_standard_normal_cdf(x):
|
40 |
+
"""
|
41 |
+
A fast approximation of the cumulative distribution function of the
|
42 |
+
standard normal.
|
43 |
+
"""
|
44 |
+
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
45 |
+
|
46 |
+
|
47 |
+
def continuous_gaussian_log_likelihood(x, *, means, log_scales):
|
48 |
+
"""
|
49 |
+
Compute the log-likelihood of a continuous Gaussian distribution.
|
50 |
+
:param x: the targets
|
51 |
+
:param means: the Gaussian mean Tensor.
|
52 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
53 |
+
:return: a tensor like x of log probabilities (in nats).
|
54 |
+
"""
|
55 |
+
centered_x = x - means
|
56 |
+
inv_stdv = th.exp(-log_scales)
|
57 |
+
normalized_x = centered_x * inv_stdv
|
58 |
+
log_probs = th.distributions.Normal(th.zeros_like(x), th.ones_like(x)).log_prob(normalized_x)
|
59 |
+
return log_probs
|
60 |
+
|
61 |
+
|
62 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
63 |
+
"""
|
64 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
65 |
+
given image.
|
66 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
67 |
+
rescaled to the range [-1, 1].
|
68 |
+
:param means: the Gaussian mean Tensor.
|
69 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
70 |
+
:return: a tensor like x of log probabilities (in nats).
|
71 |
+
"""
|
72 |
+
assert x.shape == means.shape == log_scales.shape
|
73 |
+
centered_x = x - means
|
74 |
+
inv_stdv = th.exp(-log_scales)
|
75 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
76 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
77 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
78 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
79 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
80 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
81 |
+
cdf_delta = cdf_plus - cdf_min
|
82 |
+
log_probs = th.where(
|
83 |
+
x < -0.999,
|
84 |
+
log_cdf_plus,
|
85 |
+
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
86 |
+
)
|
87 |
+
assert log_probs.shape == x.shape
|
88 |
+
return log_probs
|
diffusion/gaussian_diffusion.py
ADDED
@@ -0,0 +1,931 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch as th
|
11 |
+
import enum
|
12 |
+
|
13 |
+
from .diffusion_utils import discretized_gaussian_log_likelihood, normal_kl
|
14 |
+
|
15 |
+
|
16 |
+
def mean_flat(tensor):
|
17 |
+
"""
|
18 |
+
Take the mean over all non-batch dimensions.
|
19 |
+
"""
|
20 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
21 |
+
|
22 |
+
|
23 |
+
class ModelMeanType(enum.Enum):
|
24 |
+
"""
|
25 |
+
Which type of output the model predicts.
|
26 |
+
"""
|
27 |
+
|
28 |
+
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
|
29 |
+
START_X = enum.auto() # the model predicts x_0
|
30 |
+
EPSILON = enum.auto() # the model predicts epsilon
|
31 |
+
|
32 |
+
|
33 |
+
class ModelVarType(enum.Enum):
|
34 |
+
"""
|
35 |
+
What is used as the model's output variance.
|
36 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
37 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
38 |
+
"""
|
39 |
+
|
40 |
+
LEARNED = enum.auto()
|
41 |
+
FIXED_SMALL = enum.auto()
|
42 |
+
FIXED_LARGE = enum.auto()
|
43 |
+
LEARNED_RANGE = enum.auto()
|
44 |
+
|
45 |
+
|
46 |
+
class LossType(enum.Enum):
|
47 |
+
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
|
48 |
+
RESCALED_MSE = (
|
49 |
+
enum.auto()
|
50 |
+
) # use raw MSE loss (with RESCALED_KL when learning variances)
|
51 |
+
KL = enum.auto() # use the variational lower-bound
|
52 |
+
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
|
53 |
+
|
54 |
+
def is_vb(self):
|
55 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
56 |
+
|
57 |
+
|
58 |
+
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
|
59 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
60 |
+
warmup_time = int(num_diffusion_timesteps * warmup_frac)
|
61 |
+
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
|
62 |
+
return betas
|
63 |
+
|
64 |
+
|
65 |
+
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
|
66 |
+
"""
|
67 |
+
This is the deprecated API for creating beta schedules.
|
68 |
+
See get_named_beta_schedule() for the new library of schedules.
|
69 |
+
"""
|
70 |
+
if beta_schedule == "quad":
|
71 |
+
betas = (
|
72 |
+
np.linspace(
|
73 |
+
beta_start ** 0.5,
|
74 |
+
beta_end ** 0.5,
|
75 |
+
num_diffusion_timesteps,
|
76 |
+
dtype=np.float64,
|
77 |
+
)
|
78 |
+
** 2
|
79 |
+
)
|
80 |
+
elif beta_schedule == "linear":
|
81 |
+
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64)
|
82 |
+
elif beta_schedule == "warmup10":
|
83 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
|
84 |
+
elif beta_schedule == "warmup50":
|
85 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
|
86 |
+
elif beta_schedule == "const":
|
87 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
88 |
+
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
|
89 |
+
betas = 1.0 / np.linspace(
|
90 |
+
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
raise NotImplementedError(beta_schedule)
|
94 |
+
assert betas.shape == (num_diffusion_timesteps,)
|
95 |
+
return betas
|
96 |
+
|
97 |
+
|
98 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
99 |
+
"""
|
100 |
+
Get a pre-defined beta schedule for the given name.
|
101 |
+
The beta schedule library consists of beta schedules which remain similar
|
102 |
+
in the limit of num_diffusion_timesteps.
|
103 |
+
Beta schedules may be added, but should not be removed or changed once
|
104 |
+
they are committed to maintain backwards compatibility.
|
105 |
+
"""
|
106 |
+
if schedule_name == "linear":
|
107 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
108 |
+
# diffusion steps.
|
109 |
+
scale = 1000 / num_diffusion_timesteps
|
110 |
+
return get_beta_schedule(
|
111 |
+
"linear",
|
112 |
+
beta_start=scale * 0.0001,
|
113 |
+
beta_end=scale * 0.02,
|
114 |
+
# diffuser stable diffusion
|
115 |
+
# beta_start=scale * 0.00085,
|
116 |
+
# beta_end=scale * 0.012,
|
117 |
+
num_diffusion_timesteps=num_diffusion_timesteps,
|
118 |
+
)
|
119 |
+
elif schedule_name == "squaredcos_cap_v2":
|
120 |
+
return betas_for_alpha_bar(
|
121 |
+
num_diffusion_timesteps,
|
122 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
126 |
+
|
127 |
+
|
128 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
129 |
+
"""
|
130 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
131 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
132 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
133 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
134 |
+
produces the cumulative product of (1-beta) up to that
|
135 |
+
part of the diffusion process.
|
136 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
137 |
+
prevent singularities.
|
138 |
+
"""
|
139 |
+
betas = []
|
140 |
+
for i in range(num_diffusion_timesteps):
|
141 |
+
t1 = i / num_diffusion_timesteps
|
142 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
143 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
144 |
+
return np.array(betas)
|
145 |
+
|
146 |
+
|
147 |
+
class GaussianDiffusion:
|
148 |
+
"""
|
149 |
+
Utilities for training and sampling diffusion models.
|
150 |
+
Original ported from this codebase:
|
151 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
152 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
153 |
+
starting at T and going to 1.
|
154 |
+
"""
|
155 |
+
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
*,
|
159 |
+
betas,
|
160 |
+
model_mean_type,
|
161 |
+
model_var_type,
|
162 |
+
loss_type
|
163 |
+
):
|
164 |
+
|
165 |
+
self.model_mean_type = model_mean_type
|
166 |
+
self.model_var_type = model_var_type
|
167 |
+
self.loss_type = loss_type
|
168 |
+
|
169 |
+
# Use float64 for accuracy.
|
170 |
+
betas = np.array(betas, dtype=np.float64)
|
171 |
+
self.betas = betas
|
172 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
173 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
174 |
+
|
175 |
+
self.num_timesteps = int(betas.shape[0])
|
176 |
+
|
177 |
+
alphas = 1.0 - betas
|
178 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
179 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
180 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
181 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
182 |
+
|
183 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
184 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
185 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
186 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
187 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
188 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
189 |
+
|
190 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
191 |
+
self.posterior_variance = (
|
192 |
+
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
193 |
+
)
|
194 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
195 |
+
self.posterior_log_variance_clipped = np.log(
|
196 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
197 |
+
) if len(self.posterior_variance) > 1 else np.array([])
|
198 |
+
|
199 |
+
self.posterior_mean_coef1 = (
|
200 |
+
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
201 |
+
)
|
202 |
+
self.posterior_mean_coef2 = (
|
203 |
+
(1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod)
|
204 |
+
)
|
205 |
+
|
206 |
+
def q_mean_variance(self, x_start, t):
|
207 |
+
"""
|
208 |
+
Get the distribution q(x_t | x_0).
|
209 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
210 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
211 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
212 |
+
"""
|
213 |
+
mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
214 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
215 |
+
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
216 |
+
return mean, variance, log_variance
|
217 |
+
|
218 |
+
def q_sample(self, x_start, t, noise=None):
|
219 |
+
"""
|
220 |
+
Diffuse the data for a given number of diffusion steps.
|
221 |
+
In other words, sample from q(x_t | x_0).
|
222 |
+
:param x_start: the initial data batch.
|
223 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
224 |
+
:param noise: if specified, the split-out normal noise.
|
225 |
+
:return: A noisy version of x_start.
|
226 |
+
"""
|
227 |
+
if noise is None:
|
228 |
+
noise = th.randn_like(x_start)
|
229 |
+
assert noise.shape == x_start.shape
|
230 |
+
return (
|
231 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
232 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
233 |
+
)
|
234 |
+
|
235 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
236 |
+
"""
|
237 |
+
Compute the mean and variance of the diffusion posterior:
|
238 |
+
q(x_{t-1} | x_t, x_0)
|
239 |
+
"""
|
240 |
+
assert x_start.shape == x_t.shape
|
241 |
+
posterior_mean = (
|
242 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
243 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
244 |
+
)
|
245 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
246 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
247 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
248 |
+
)
|
249 |
+
assert (
|
250 |
+
posterior_mean.shape[0]
|
251 |
+
== posterior_variance.shape[0]
|
252 |
+
== posterior_log_variance_clipped.shape[0]
|
253 |
+
== x_start.shape[0]
|
254 |
+
)
|
255 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
256 |
+
|
257 |
+
def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None,
|
258 |
+
mask=None, x_start=None, use_concat=False):
|
259 |
+
"""
|
260 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
261 |
+
the initial x, x_0.
|
262 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
263 |
+
as input.
|
264 |
+
:param x: the [N x C x ...] tensor at time t.
|
265 |
+
:param t: a 1-D Tensor of timesteps.
|
266 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
267 |
+
:param denoised_fn: if not None, a function which applies to the
|
268 |
+
x_start prediction before it is used to sample. Applies before
|
269 |
+
clip_denoised.
|
270 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
271 |
+
pass to the model. This can be used for conditioning.
|
272 |
+
:return: a dict with the following keys:
|
273 |
+
- 'mean': the model mean output.
|
274 |
+
- 'variance': the model variance output.
|
275 |
+
- 'log_variance': the log of 'variance'.
|
276 |
+
- 'pred_xstart': the prediction for x_0.
|
277 |
+
"""
|
278 |
+
if model_kwargs is None:
|
279 |
+
model_kwargs = {}
|
280 |
+
|
281 |
+
B, F, C = x.shape[:3]
|
282 |
+
assert t.shape == (B,)
|
283 |
+
if use_concat:
|
284 |
+
model_output = model(th.concat([x, mask, x_start], dim=1), t, **model_kwargs)
|
285 |
+
else:
|
286 |
+
model_output = model(x, t, **model_kwargs)
|
287 |
+
try:
|
288 |
+
model_output = model_output.sample # for tav unet
|
289 |
+
except:
|
290 |
+
pass
|
291 |
+
# model_output = model(x, t, **model_kwargs)
|
292 |
+
if isinstance(model_output, tuple):
|
293 |
+
model_output, extra = model_output
|
294 |
+
else:
|
295 |
+
extra = None
|
296 |
+
|
297 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
298 |
+
assert model_output.shape == (B, F, C * 2, *x.shape[3:])
|
299 |
+
model_output, model_var_values = th.split(model_output, C, dim=2)
|
300 |
+
min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape)
|
301 |
+
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
|
302 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
303 |
+
frac = (model_var_values + 1) / 2
|
304 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
305 |
+
model_variance = th.exp(model_log_variance)
|
306 |
+
else:
|
307 |
+
model_variance, model_log_variance = {
|
308 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
309 |
+
# to get a better decoder log likelihood.
|
310 |
+
ModelVarType.FIXED_LARGE: (
|
311 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
312 |
+
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
313 |
+
),
|
314 |
+
ModelVarType.FIXED_SMALL: (
|
315 |
+
self.posterior_variance,
|
316 |
+
self.posterior_log_variance_clipped,
|
317 |
+
),
|
318 |
+
}[self.model_var_type]
|
319 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
320 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
321 |
+
|
322 |
+
def process_xstart(x):
|
323 |
+
if denoised_fn is not None:
|
324 |
+
x = denoised_fn(x)
|
325 |
+
if clip_denoised:
|
326 |
+
return x.clamp(-1, 1)
|
327 |
+
return x
|
328 |
+
|
329 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
330 |
+
pred_xstart = process_xstart(model_output)
|
331 |
+
else:
|
332 |
+
pred_xstart = process_xstart(
|
333 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
334 |
+
)
|
335 |
+
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t)
|
336 |
+
|
337 |
+
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
338 |
+
return {
|
339 |
+
"mean": model_mean,
|
340 |
+
"variance": model_variance,
|
341 |
+
"log_variance": model_log_variance,
|
342 |
+
"pred_xstart": pred_xstart,
|
343 |
+
"extra": extra,
|
344 |
+
}
|
345 |
+
|
346 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
347 |
+
assert x_t.shape == eps.shape
|
348 |
+
return (
|
349 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
350 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
351 |
+
)
|
352 |
+
|
353 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
354 |
+
return (
|
355 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart
|
356 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
357 |
+
|
358 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
359 |
+
"""
|
360 |
+
Compute the mean for the previous step, given a function cond_fn that
|
361 |
+
computes the gradient of a conditional log probability with respect to
|
362 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
363 |
+
condition on y.
|
364 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
365 |
+
"""
|
366 |
+
gradient = cond_fn(x, t, **model_kwargs)
|
367 |
+
new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
368 |
+
return new_mean
|
369 |
+
|
370 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
371 |
+
"""
|
372 |
+
Compute what the p_mean_variance output would have been, should the
|
373 |
+
model's score function be conditioned by cond_fn.
|
374 |
+
See condition_mean() for details on cond_fn.
|
375 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
376 |
+
from Song et al (2020).
|
377 |
+
"""
|
378 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
379 |
+
|
380 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
381 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs)
|
382 |
+
|
383 |
+
out = p_mean_var.copy()
|
384 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
385 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t)
|
386 |
+
return out
|
387 |
+
|
388 |
+
def p_sample(
|
389 |
+
self,
|
390 |
+
model,
|
391 |
+
x,
|
392 |
+
t,
|
393 |
+
clip_denoised=True,
|
394 |
+
denoised_fn=None,
|
395 |
+
cond_fn=None,
|
396 |
+
model_kwargs=None,
|
397 |
+
mask=None,
|
398 |
+
x_start=None,
|
399 |
+
use_concat=False
|
400 |
+
):
|
401 |
+
"""
|
402 |
+
Sample x_{t-1} from the model at the given timestep.
|
403 |
+
:param model: the model to sample from.
|
404 |
+
:param x: the current tensor at x_{t-1}.
|
405 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
406 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
407 |
+
:param denoised_fn: if not None, a function which applies to the
|
408 |
+
x_start prediction before it is used to sample.
|
409 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
410 |
+
similarly to the model.
|
411 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
412 |
+
pass to the model. This can be used for conditioning.
|
413 |
+
:return: a dict containing the following keys:
|
414 |
+
- 'sample': a random sample from the model.
|
415 |
+
- 'pred_xstart': a prediction of x_0.
|
416 |
+
"""
|
417 |
+
out = self.p_mean_variance(
|
418 |
+
model,
|
419 |
+
x,
|
420 |
+
t,
|
421 |
+
clip_denoised=clip_denoised,
|
422 |
+
denoised_fn=denoised_fn,
|
423 |
+
model_kwargs=model_kwargs,
|
424 |
+
mask=mask,
|
425 |
+
x_start=x_start,
|
426 |
+
use_concat=use_concat
|
427 |
+
)
|
428 |
+
noise = th.randn_like(x)
|
429 |
+
nonzero_mask = (
|
430 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
431 |
+
) # no noise when t == 0
|
432 |
+
if cond_fn is not None:
|
433 |
+
out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
434 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
435 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
436 |
+
|
437 |
+
def p_sample_loop(
|
438 |
+
self,
|
439 |
+
model,
|
440 |
+
shape,
|
441 |
+
noise=None,
|
442 |
+
clip_denoised=True,
|
443 |
+
denoised_fn=None,
|
444 |
+
cond_fn=None,
|
445 |
+
model_kwargs=None,
|
446 |
+
device=None,
|
447 |
+
progress=False,
|
448 |
+
mask=None,
|
449 |
+
x_start=None,
|
450 |
+
use_concat=False,
|
451 |
+
):
|
452 |
+
"""
|
453 |
+
Generate samples from the model.
|
454 |
+
:param model: the model module.
|
455 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
456 |
+
:param noise: if specified, the noise from the encoder to sample.
|
457 |
+
Should be of the same shape as `shape`.
|
458 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
459 |
+
:param denoised_fn: if not None, a function which applies to the
|
460 |
+
x_start prediction before it is used to sample.
|
461 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
462 |
+
similarly to the model.
|
463 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
464 |
+
pass to the model. This can be used for conditioning.
|
465 |
+
:param device: if specified, the device to create the samples on.
|
466 |
+
If not specified, use a model parameter's device.
|
467 |
+
:param progress: if True, show a tqdm progress bar.
|
468 |
+
:return: a non-differentiable batch of samples.
|
469 |
+
"""
|
470 |
+
final = None
|
471 |
+
for sample in self.p_sample_loop_progressive(
|
472 |
+
model,
|
473 |
+
shape,
|
474 |
+
noise=noise,
|
475 |
+
clip_denoised=clip_denoised,
|
476 |
+
denoised_fn=denoised_fn,
|
477 |
+
cond_fn=cond_fn,
|
478 |
+
model_kwargs=model_kwargs,
|
479 |
+
device=device,
|
480 |
+
progress=progress,
|
481 |
+
mask=mask,
|
482 |
+
x_start=x_start,
|
483 |
+
use_concat=use_concat
|
484 |
+
):
|
485 |
+
final = sample
|
486 |
+
return final["sample"]
|
487 |
+
|
488 |
+
def p_sample_loop_progressive(
|
489 |
+
self,
|
490 |
+
model,
|
491 |
+
shape,
|
492 |
+
noise=None,
|
493 |
+
clip_denoised=True,
|
494 |
+
denoised_fn=None,
|
495 |
+
cond_fn=None,
|
496 |
+
model_kwargs=None,
|
497 |
+
device=None,
|
498 |
+
progress=False,
|
499 |
+
mask=None,
|
500 |
+
x_start=None,
|
501 |
+
use_concat=False
|
502 |
+
):
|
503 |
+
"""
|
504 |
+
Generate samples from the model and yield intermediate samples from
|
505 |
+
each timestep of diffusion.
|
506 |
+
Arguments are the same as p_sample_loop().
|
507 |
+
Returns a generator over dicts, where each dict is the return value of
|
508 |
+
p_sample().
|
509 |
+
"""
|
510 |
+
if device is None:
|
511 |
+
device = next(model.parameters()).device
|
512 |
+
assert isinstance(shape, (tuple, list))
|
513 |
+
if noise is not None:
|
514 |
+
img = noise
|
515 |
+
else:
|
516 |
+
img = th.randn(*shape, device=device)
|
517 |
+
indices = list(range(self.num_timesteps))[::-1]
|
518 |
+
|
519 |
+
if progress:
|
520 |
+
# Lazy import so that we don't depend on tqdm.
|
521 |
+
from tqdm.auto import tqdm
|
522 |
+
|
523 |
+
indices = tqdm(indices)
|
524 |
+
|
525 |
+
for i in indices:
|
526 |
+
t = th.tensor([i] * shape[0], device=device)
|
527 |
+
with th.no_grad():
|
528 |
+
out = self.p_sample(
|
529 |
+
model,
|
530 |
+
img,
|
531 |
+
t,
|
532 |
+
clip_denoised=clip_denoised,
|
533 |
+
denoised_fn=denoised_fn,
|
534 |
+
cond_fn=cond_fn,
|
535 |
+
model_kwargs=model_kwargs,
|
536 |
+
mask=mask,
|
537 |
+
x_start=x_start,
|
538 |
+
use_concat=use_concat
|
539 |
+
)
|
540 |
+
yield out
|
541 |
+
img = out["sample"]
|
542 |
+
|
543 |
+
def ddim_sample(
|
544 |
+
self,
|
545 |
+
model,
|
546 |
+
x,
|
547 |
+
t,
|
548 |
+
clip_denoised=True,
|
549 |
+
denoised_fn=None,
|
550 |
+
cond_fn=None,
|
551 |
+
model_kwargs=None,
|
552 |
+
eta=0.0,
|
553 |
+
mask=None,
|
554 |
+
x_start=None,
|
555 |
+
use_concat=False
|
556 |
+
):
|
557 |
+
"""
|
558 |
+
Sample x_{t-1} from the model using DDIM.
|
559 |
+
Same usage as p_sample().
|
560 |
+
"""
|
561 |
+
out = self.p_mean_variance(
|
562 |
+
model,
|
563 |
+
x,
|
564 |
+
t,
|
565 |
+
clip_denoised=clip_denoised,
|
566 |
+
denoised_fn=denoised_fn,
|
567 |
+
model_kwargs=model_kwargs,
|
568 |
+
mask=mask,
|
569 |
+
x_start=x_start,
|
570 |
+
use_concat=use_concat
|
571 |
+
)
|
572 |
+
if cond_fn is not None:
|
573 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
574 |
+
|
575 |
+
# Usually our model outputs epsilon, but we re-derive it
|
576 |
+
# in case we used x_start or x_prev prediction.
|
577 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
578 |
+
|
579 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
580 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
581 |
+
sigma = (
|
582 |
+
eta
|
583 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
584 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
585 |
+
)
|
586 |
+
# Equation 12.
|
587 |
+
noise = th.randn_like(x)
|
588 |
+
mean_pred = (
|
589 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
590 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
591 |
+
)
|
592 |
+
nonzero_mask = (
|
593 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
594 |
+
) # no noise when t == 0
|
595 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
596 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
597 |
+
|
598 |
+
def ddim_reverse_sample(
|
599 |
+
self,
|
600 |
+
model,
|
601 |
+
x,
|
602 |
+
t,
|
603 |
+
clip_denoised=True,
|
604 |
+
denoised_fn=None,
|
605 |
+
cond_fn=None,
|
606 |
+
model_kwargs=None,
|
607 |
+
eta=0.0,
|
608 |
+
):
|
609 |
+
"""
|
610 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
611 |
+
"""
|
612 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
613 |
+
out = self.p_mean_variance(
|
614 |
+
model,
|
615 |
+
x,
|
616 |
+
t,
|
617 |
+
clip_denoised=clip_denoised,
|
618 |
+
denoised_fn=denoised_fn,
|
619 |
+
model_kwargs=model_kwargs,
|
620 |
+
)
|
621 |
+
if cond_fn is not None:
|
622 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
623 |
+
# Usually our model outputs epsilon, but we re-derive it
|
624 |
+
# in case we used x_start or x_prev prediction.
|
625 |
+
eps = (
|
626 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
627 |
+
- out["pred_xstart"]
|
628 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
629 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
630 |
+
|
631 |
+
# Equation 12. reversed
|
632 |
+
mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps
|
633 |
+
|
634 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
635 |
+
|
636 |
+
def ddim_sample_loop(
|
637 |
+
self,
|
638 |
+
model,
|
639 |
+
shape,
|
640 |
+
noise=None,
|
641 |
+
clip_denoised=True,
|
642 |
+
denoised_fn=None,
|
643 |
+
cond_fn=None,
|
644 |
+
model_kwargs=None,
|
645 |
+
device=None,
|
646 |
+
progress=False,
|
647 |
+
eta=0.0,
|
648 |
+
mask=None,
|
649 |
+
x_start=None,
|
650 |
+
use_concat=False
|
651 |
+
):
|
652 |
+
"""
|
653 |
+
Generate samples from the model using DDIM.
|
654 |
+
Same usage as p_sample_loop().
|
655 |
+
"""
|
656 |
+
final = None
|
657 |
+
for sample in self.ddim_sample_loop_progressive(
|
658 |
+
model,
|
659 |
+
shape,
|
660 |
+
noise=noise,
|
661 |
+
clip_denoised=clip_denoised,
|
662 |
+
denoised_fn=denoised_fn,
|
663 |
+
cond_fn=cond_fn,
|
664 |
+
model_kwargs=model_kwargs,
|
665 |
+
device=device,
|
666 |
+
progress=progress,
|
667 |
+
eta=eta,
|
668 |
+
mask=mask,
|
669 |
+
x_start=x_start,
|
670 |
+
use_concat=use_concat
|
671 |
+
):
|
672 |
+
final = sample
|
673 |
+
return final["sample"]
|
674 |
+
|
675 |
+
def ddim_sample_loop_progressive(
|
676 |
+
self,
|
677 |
+
model,
|
678 |
+
shape,
|
679 |
+
noise=None,
|
680 |
+
clip_denoised=True,
|
681 |
+
denoised_fn=None,
|
682 |
+
cond_fn=None,
|
683 |
+
model_kwargs=None,
|
684 |
+
device=None,
|
685 |
+
progress=False,
|
686 |
+
eta=0.0,
|
687 |
+
mask=None,
|
688 |
+
x_start=None,
|
689 |
+
use_concat=False
|
690 |
+
):
|
691 |
+
"""
|
692 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
693 |
+
each timestep of DDIM.
|
694 |
+
Same usage as p_sample_loop_progressive().
|
695 |
+
"""
|
696 |
+
if device is None:
|
697 |
+
device = next(model.parameters()).device
|
698 |
+
assert isinstance(shape, (tuple, list))
|
699 |
+
if noise is not None:
|
700 |
+
img = noise
|
701 |
+
else:
|
702 |
+
img = th.randn(*shape, device=device)
|
703 |
+
indices = list(range(self.num_timesteps))[::-1]
|
704 |
+
|
705 |
+
if progress:
|
706 |
+
# Lazy import so that we don't depend on tqdm.
|
707 |
+
from tqdm.auto import tqdm
|
708 |
+
|
709 |
+
indices = tqdm(indices)
|
710 |
+
|
711 |
+
for i in indices:
|
712 |
+
t = th.tensor([i] * shape[0], device=device)
|
713 |
+
with th.no_grad():
|
714 |
+
out = self.ddim_sample(
|
715 |
+
model,
|
716 |
+
img,
|
717 |
+
t,
|
718 |
+
clip_denoised=clip_denoised,
|
719 |
+
denoised_fn=denoised_fn,
|
720 |
+
cond_fn=cond_fn,
|
721 |
+
model_kwargs=model_kwargs,
|
722 |
+
eta=eta,
|
723 |
+
mask=mask,
|
724 |
+
x_start=x_start,
|
725 |
+
use_concat=use_concat
|
726 |
+
)
|
727 |
+
yield out
|
728 |
+
img = out["sample"]
|
729 |
+
|
730 |
+
def _vb_terms_bpd(
|
731 |
+
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
|
732 |
+
):
|
733 |
+
"""
|
734 |
+
Get a term for the variational lower-bound.
|
735 |
+
The resulting units are bits (rather than nats, as one might expect).
|
736 |
+
This allows for comparison to other papers.
|
737 |
+
:return: a dict with the following keys:
|
738 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
739 |
+
- 'pred_xstart': the x_0 predictions.
|
740 |
+
"""
|
741 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
742 |
+
x_start=x_start, x_t=x_t, t=t
|
743 |
+
)
|
744 |
+
out = self.p_mean_variance(
|
745 |
+
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
746 |
+
)
|
747 |
+
kl = normal_kl(
|
748 |
+
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
749 |
+
)
|
750 |
+
kl = mean_flat(kl) / np.log(2.0)
|
751 |
+
|
752 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
753 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
754 |
+
)
|
755 |
+
assert decoder_nll.shape == x_start.shape
|
756 |
+
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
757 |
+
|
758 |
+
# At the first timestep return the decoder NLL,
|
759 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
760 |
+
output = th.where((t == 0), decoder_nll, kl)
|
761 |
+
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
762 |
+
|
763 |
+
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None, use_mask=False):
|
764 |
+
"""
|
765 |
+
Compute training losses for a single timestep.
|
766 |
+
:param model: the model to evaluate loss on.
|
767 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
768 |
+
:param t: a batch of timestep indices.
|
769 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
770 |
+
pass to the model. This can be used for conditioning.
|
771 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
772 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
773 |
+
Some mean or variance settings may also have other keys.
|
774 |
+
"""
|
775 |
+
if model_kwargs is None:
|
776 |
+
model_kwargs = {}
|
777 |
+
if noise is None:
|
778 |
+
noise = th.randn_like(x_start)
|
779 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
780 |
+
if use_mask:
|
781 |
+
x_t = th.cat([x_t[:, :4], x_start[:, 4:]], dim=1)
|
782 |
+
terms = {}
|
783 |
+
|
784 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
785 |
+
terms["loss"] = self._vb_terms_bpd(
|
786 |
+
model=model,
|
787 |
+
x_start=x_start,
|
788 |
+
x_t=x_t,
|
789 |
+
t=t,
|
790 |
+
clip_denoised=False,
|
791 |
+
model_kwargs=model_kwargs,
|
792 |
+
)["output"]
|
793 |
+
if self.loss_type == LossType.RESCALED_KL:
|
794 |
+
terms["loss"] *= self.num_timesteps
|
795 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
796 |
+
model_output = model(x_t, t, **model_kwargs)
|
797 |
+
try:
|
798 |
+
# model_output = model(x_t, t, **model_kwargs).sample
|
799 |
+
model_output = model_output.sample # for tav unet
|
800 |
+
except:
|
801 |
+
pass
|
802 |
+
# model_output = model(x_t, t, **model_kwargs)
|
803 |
+
|
804 |
+
if self.model_var_type in [
|
805 |
+
ModelVarType.LEARNED,
|
806 |
+
ModelVarType.LEARNED_RANGE,
|
807 |
+
]:
|
808 |
+
B, F, C = x_t.shape[:3]
|
809 |
+
assert model_output.shape == (B, F, C * 2, *x_t.shape[3:])
|
810 |
+
model_output, model_var_values = th.split(model_output, C, dim=2)
|
811 |
+
# Learn the variance using the variational bound, but don't let
|
812 |
+
# it affect our mean prediction.
|
813 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=2)
|
814 |
+
terms["vb"] = self._vb_terms_bpd(
|
815 |
+
model=lambda *args, r=frozen_out: r,
|
816 |
+
x_start=x_start,
|
817 |
+
x_t=x_t,
|
818 |
+
t=t,
|
819 |
+
clip_denoised=False,
|
820 |
+
)["output"]
|
821 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
822 |
+
# Divide by 1000 for equivalence with initial implementation.
|
823 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
824 |
+
terms["vb"] *= self.num_timesteps / 1000.0
|
825 |
+
|
826 |
+
target = {
|
827 |
+
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
828 |
+
x_start=x_start, x_t=x_t, t=t
|
829 |
+
)[0],
|
830 |
+
ModelMeanType.START_X: x_start,
|
831 |
+
ModelMeanType.EPSILON: noise,
|
832 |
+
}[self.model_mean_type]
|
833 |
+
# assert model_output.shape == target.shape == x_start.shape
|
834 |
+
if use_mask:
|
835 |
+
terms["mse"] = mean_flat((target[:,:4] - model_output) ** 2)
|
836 |
+
else:
|
837 |
+
terms["mse"] = mean_flat((target - model_output) ** 2)
|
838 |
+
if "vb" in terms:
|
839 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
840 |
+
else:
|
841 |
+
terms["loss"] = terms["mse"]
|
842 |
+
else:
|
843 |
+
raise NotImplementedError(self.loss_type)
|
844 |
+
|
845 |
+
return terms
|
846 |
+
|
847 |
+
def _prior_bpd(self, x_start):
|
848 |
+
"""
|
849 |
+
Get the prior KL term for the variational lower-bound, measured in
|
850 |
+
bits-per-dim.
|
851 |
+
This term can't be optimized, as it only depends on the encoder.
|
852 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
853 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
854 |
+
"""
|
855 |
+
batch_size = x_start.shape[0]
|
856 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
857 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
858 |
+
kl_prior = normal_kl(
|
859 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
860 |
+
)
|
861 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
862 |
+
|
863 |
+
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
864 |
+
"""
|
865 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
866 |
+
as well as other related quantities.
|
867 |
+
:param model: the model to evaluate loss on.
|
868 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
869 |
+
:param clip_denoised: if True, clip denoised samples.
|
870 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
871 |
+
pass to the model. This can be used for conditioning.
|
872 |
+
:return: a dict containing the following keys:
|
873 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
874 |
+
- prior_bpd: the prior term in the lower-bound.
|
875 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
876 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
877 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
878 |
+
"""
|
879 |
+
device = x_start.device
|
880 |
+
batch_size = x_start.shape[0]
|
881 |
+
|
882 |
+
vb = []
|
883 |
+
xstart_mse = []
|
884 |
+
mse = []
|
885 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
886 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
887 |
+
noise = th.randn_like(x_start)
|
888 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
889 |
+
# Calculate VLB term at the current timestep
|
890 |
+
with th.no_grad():
|
891 |
+
out = self._vb_terms_bpd(
|
892 |
+
model,
|
893 |
+
x_start=x_start,
|
894 |
+
x_t=x_t,
|
895 |
+
t=t_batch,
|
896 |
+
clip_denoised=clip_denoised,
|
897 |
+
model_kwargs=model_kwargs,
|
898 |
+
)
|
899 |
+
vb.append(out["output"])
|
900 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
901 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
902 |
+
mse.append(mean_flat((eps - noise) ** 2))
|
903 |
+
|
904 |
+
vb = th.stack(vb, dim=1)
|
905 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
906 |
+
mse = th.stack(mse, dim=1)
|
907 |
+
|
908 |
+
prior_bpd = self._prior_bpd(x_start)
|
909 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
910 |
+
return {
|
911 |
+
"total_bpd": total_bpd,
|
912 |
+
"prior_bpd": prior_bpd,
|
913 |
+
"vb": vb,
|
914 |
+
"xstart_mse": xstart_mse,
|
915 |
+
"mse": mse,
|
916 |
+
}
|
917 |
+
|
918 |
+
|
919 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
920 |
+
"""
|
921 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
922 |
+
:param arr: the 1-D numpy array.
|
923 |
+
:param timesteps: a tensor of indices into the array to extract.
|
924 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
925 |
+
dimension equal to the length of timesteps.
|
926 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
927 |
+
"""
|
928 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
929 |
+
while len(res.shape) < len(broadcast_shape):
|
930 |
+
res = res[..., None]
|
931 |
+
return res + th.zeros(broadcast_shape, device=timesteps.device)
|
diffusion/respace.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
|
9 |
+
from .gaussian_diffusion import GaussianDiffusion
|
10 |
+
|
11 |
+
|
12 |
+
def space_timesteps(num_timesteps, section_counts):
|
13 |
+
"""
|
14 |
+
Create a list of timesteps to use from an original diffusion process,
|
15 |
+
given the number of timesteps we want to take from equally-sized portions
|
16 |
+
of the original process.
|
17 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
18 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
19 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
20 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
21 |
+
from the DDIM paper is used, and only one section is allowed.
|
22 |
+
:param num_timesteps: the number of diffusion steps in the original
|
23 |
+
process to divide up.
|
24 |
+
:param section_counts: either a list of numbers, or a string containing
|
25 |
+
comma-separated numbers, indicating the step count
|
26 |
+
per section. As a special case, use "ddimN" where N
|
27 |
+
is a number of steps to use the striding from the
|
28 |
+
DDIM paper.
|
29 |
+
:return: a set of diffusion steps from the original process to use.
|
30 |
+
"""
|
31 |
+
if isinstance(section_counts, str):
|
32 |
+
if section_counts.startswith("ddim"):
|
33 |
+
desired_count = int(section_counts[len("ddim") :])
|
34 |
+
for i in range(1, num_timesteps):
|
35 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
36 |
+
return set(range(0, num_timesteps, i))
|
37 |
+
raise ValueError(
|
38 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
39 |
+
)
|
40 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
41 |
+
size_per = num_timesteps // len(section_counts)
|
42 |
+
extra = num_timesteps % len(section_counts)
|
43 |
+
start_idx = 0
|
44 |
+
all_steps = []
|
45 |
+
for i, section_count in enumerate(section_counts):
|
46 |
+
size = size_per + (1 if i < extra else 0)
|
47 |
+
if size < section_count:
|
48 |
+
raise ValueError(
|
49 |
+
f"cannot divide section of {size} steps into {section_count}"
|
50 |
+
)
|
51 |
+
if section_count <= 1:
|
52 |
+
frac_stride = 1
|
53 |
+
else:
|
54 |
+
frac_stride = (size - 1) / (section_count - 1)
|
55 |
+
cur_idx = 0.0
|
56 |
+
taken_steps = []
|
57 |
+
for _ in range(section_count):
|
58 |
+
taken_steps.append(start_idx + round(cur_idx))
|
59 |
+
cur_idx += frac_stride
|
60 |
+
all_steps += taken_steps
|
61 |
+
start_idx += size
|
62 |
+
return set(all_steps)
|
63 |
+
|
64 |
+
|
65 |
+
class SpacedDiffusion(GaussianDiffusion):
|
66 |
+
"""
|
67 |
+
A diffusion process which can skip steps in a base diffusion process.
|
68 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
69 |
+
original diffusion process to retain.
|
70 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, use_timesteps, **kwargs):
|
74 |
+
self.use_timesteps = set(use_timesteps)
|
75 |
+
self.timestep_map = []
|
76 |
+
self.original_num_steps = len(kwargs["betas"])
|
77 |
+
|
78 |
+
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
|
79 |
+
last_alpha_cumprod = 1.0
|
80 |
+
new_betas = []
|
81 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
82 |
+
if i in self.use_timesteps:
|
83 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
84 |
+
last_alpha_cumprod = alpha_cumprod
|
85 |
+
self.timestep_map.append(i)
|
86 |
+
kwargs["betas"] = np.array(new_betas)
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
|
89 |
+
def p_mean_variance(
|
90 |
+
self, model, *args, **kwargs
|
91 |
+
): # pylint: disable=signature-differs
|
92 |
+
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
93 |
+
|
94 |
+
# @torch.compile
|
95 |
+
def training_losses(
|
96 |
+
self, model, *args, **kwargs
|
97 |
+
): # pylint: disable=signature-differs
|
98 |
+
return super().training_losses(self._wrap_model(model), *args, **kwargs)
|
99 |
+
|
100 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
101 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
|
102 |
+
|
103 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
104 |
+
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
|
105 |
+
|
106 |
+
def _wrap_model(self, model):
|
107 |
+
if isinstance(model, _WrappedModel):
|
108 |
+
return model
|
109 |
+
return _WrappedModel(
|
110 |
+
model, self.timestep_map, self.original_num_steps
|
111 |
+
)
|
112 |
+
|
113 |
+
def _scale_timesteps(self, t):
|
114 |
+
# Scaling is done by the wrapped model.
|
115 |
+
return t
|
116 |
+
|
117 |
+
|
118 |
+
class _WrappedModel:
|
119 |
+
def __init__(self, model, timestep_map, original_num_steps):
|
120 |
+
self.model = model
|
121 |
+
self.timestep_map = timestep_map
|
122 |
+
# self.rescale_timesteps = rescale_timesteps
|
123 |
+
self.original_num_steps = original_num_steps
|
124 |
+
|
125 |
+
def __call__(self, x, ts, **kwargs):
|
126 |
+
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
127 |
+
new_ts = map_tensor[ts]
|
128 |
+
# if self.rescale_timesteps:
|
129 |
+
# new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
130 |
+
return self.model(x, new_ts, **kwargs)
|
diffusion/timestep_sampler.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch as th
|
10 |
+
import torch.distributed as dist
|
11 |
+
|
12 |
+
|
13 |
+
def create_named_schedule_sampler(name, diffusion):
|
14 |
+
"""
|
15 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
16 |
+
:param name: the name of the sampler.
|
17 |
+
:param diffusion: the diffusion object to sample for.
|
18 |
+
"""
|
19 |
+
if name == "uniform":
|
20 |
+
return UniformSampler(diffusion)
|
21 |
+
elif name == "loss-second-moment":
|
22 |
+
return LossSecondMomentResampler(diffusion)
|
23 |
+
else:
|
24 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
25 |
+
|
26 |
+
|
27 |
+
class ScheduleSampler(ABC):
|
28 |
+
"""
|
29 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
30 |
+
variance of the objective.
|
31 |
+
By default, samplers perform unbiased importance sampling, in which the
|
32 |
+
objective's mean is unchanged.
|
33 |
+
However, subclasses may override sample() to change how the resampled
|
34 |
+
terms are reweighted, allowing for actual changes in the objective.
|
35 |
+
"""
|
36 |
+
|
37 |
+
@abstractmethod
|
38 |
+
def weights(self):
|
39 |
+
"""
|
40 |
+
Get a numpy array of weights, one per diffusion step.
|
41 |
+
The weights needn't be normalized, but must be positive.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def sample(self, batch_size, device):
|
45 |
+
"""
|
46 |
+
Importance-sample timesteps for a batch.
|
47 |
+
:param batch_size: the number of timesteps.
|
48 |
+
:param device: the torch device to save to.
|
49 |
+
:return: a tuple (timesteps, weights):
|
50 |
+
- timesteps: a tensor of timestep indices.
|
51 |
+
- weights: a tensor of weights to scale the resulting losses.
|
52 |
+
"""
|
53 |
+
w = self.weights()
|
54 |
+
p = w / np.sum(w)
|
55 |
+
indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
|
56 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
57 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
58 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
59 |
+
return indices, weights
|
60 |
+
|
61 |
+
|
62 |
+
class UniformSampler(ScheduleSampler):
|
63 |
+
def __init__(self, diffusion):
|
64 |
+
self.diffusion = diffusion
|
65 |
+
self._weights = np.ones([diffusion.num_timesteps])
|
66 |
+
|
67 |
+
def weights(self):
|
68 |
+
return self._weights
|
69 |
+
|
70 |
+
|
71 |
+
class LossAwareSampler(ScheduleSampler):
|
72 |
+
def update_with_local_losses(self, local_ts, local_losses):
|
73 |
+
"""
|
74 |
+
Update the reweighting using losses from a model.
|
75 |
+
Call this method from each rank with a batch of timesteps and the
|
76 |
+
corresponding losses for each of those timesteps.
|
77 |
+
This method will perform synchronization to make sure all of the ranks
|
78 |
+
maintain the exact same reweighting.
|
79 |
+
:param local_ts: an integer Tensor of timesteps.
|
80 |
+
:param local_losses: a 1D Tensor of losses.
|
81 |
+
"""
|
82 |
+
batch_sizes = [
|
83 |
+
th.tensor([0], dtype=th.int32, device=local_ts.device)
|
84 |
+
for _ in range(dist.get_world_size())
|
85 |
+
]
|
86 |
+
dist.all_gather(
|
87 |
+
batch_sizes,
|
88 |
+
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
|
89 |
+
)
|
90 |
+
|
91 |
+
# Pad all_gather batches to be the maximum batch size.
|
92 |
+
batch_sizes = [x.item() for x in batch_sizes]
|
93 |
+
max_bs = max(batch_sizes)
|
94 |
+
|
95 |
+
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
|
96 |
+
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
|
97 |
+
dist.all_gather(timestep_batches, local_ts)
|
98 |
+
dist.all_gather(loss_batches, local_losses)
|
99 |
+
timesteps = [
|
100 |
+
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
|
101 |
+
]
|
102 |
+
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
|
103 |
+
self.update_with_all_losses(timesteps, losses)
|
104 |
+
|
105 |
+
@abstractmethod
|
106 |
+
def update_with_all_losses(self, ts, losses):
|
107 |
+
"""
|
108 |
+
Update the reweighting using losses from a model.
|
109 |
+
Sub-classes should override this method to update the reweighting
|
110 |
+
using losses from the model.
|
111 |
+
This method directly updates the reweighting without synchronizing
|
112 |
+
between workers. It is called by update_with_local_losses from all
|
113 |
+
ranks with identical arguments. Thus, it should have deterministic
|
114 |
+
behavior to maintain state across workers.
|
115 |
+
:param ts: a list of int timesteps.
|
116 |
+
:param losses: a list of float losses, one per timestep.
|
117 |
+
"""
|
118 |
+
|
119 |
+
|
120 |
+
class LossSecondMomentResampler(LossAwareSampler):
|
121 |
+
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
|
122 |
+
self.diffusion = diffusion
|
123 |
+
self.history_per_term = history_per_term
|
124 |
+
self.uniform_prob = uniform_prob
|
125 |
+
self._loss_history = np.zeros(
|
126 |
+
[diffusion.num_timesteps, history_per_term], dtype=np.float64
|
127 |
+
)
|
128 |
+
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
|
129 |
+
|
130 |
+
def weights(self):
|
131 |
+
if not self._warmed_up():
|
132 |
+
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
|
133 |
+
weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
|
134 |
+
weights /= np.sum(weights)
|
135 |
+
weights *= 1 - self.uniform_prob
|
136 |
+
weights += self.uniform_prob / len(weights)
|
137 |
+
return weights
|
138 |
+
|
139 |
+
def update_with_all_losses(self, ts, losses):
|
140 |
+
for t, loss in zip(ts, losses):
|
141 |
+
if self._loss_counts[t] == self.history_per_term:
|
142 |
+
# Shift out the oldest loss term.
|
143 |
+
self._loss_history[t, :-1] = self._loss_history[t, 1:]
|
144 |
+
self._loss_history[t, -1] = loss
|
145 |
+
else:
|
146 |
+
self._loss_history[t, self._loss_counts[t]] = loss
|
147 |
+
self._loss_counts[t] += 1
|
148 |
+
|
149 |
+
def _warmed_up(self):
|
150 |
+
return (self._loss_counts == self.history_per_term).all()
|
download.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""
|
8 |
+
Functions for downloading pre-trained DiT models
|
9 |
+
"""
|
10 |
+
from torchvision.datasets.utils import download_url
|
11 |
+
import torch
|
12 |
+
import os
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
def find_model(model_name):
|
17 |
+
|
18 |
+
checkpoint = torch.load(model_name, map_location=lambda storage, loc: storage)
|
19 |
+
|
20 |
+
if "ema" in checkpoint: # supports checkpoints from train.py
|
21 |
+
print('Ema existing!')
|
22 |
+
checkpoint = checkpoint["ema"]
|
23 |
+
return checkpoint
|
24 |
+
|
25 |
+
|
26 |
+
def download_model(model_name):
|
27 |
+
"""
|
28 |
+
Downloads a pre-trained DiT model from the web.
|
29 |
+
"""
|
30 |
+
assert model_name in pretrained_models
|
31 |
+
local_path = f'pretrained_models/{model_name}'
|
32 |
+
if not os.path.isfile(local_path):
|
33 |
+
os.makedirs('pretrained_models', exist_ok=True)
|
34 |
+
web_path = f'https://dl.fbaipublicfiles.com/DiT/models/{model_name}'
|
35 |
+
download_url(web_path, 'pretrained_models')
|
36 |
+
model = torch.load(local_path, map_location=lambda storage, loc: storage)
|
37 |
+
return model
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
# Download all DiT checkpoints
|
42 |
+
for model in pretrained_models:
|
43 |
+
download_model(model)
|
44 |
+
print('Done.')
|
env.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: seine
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
- conda-forge
|
6 |
+
- defaults
|
7 |
+
dependencies:
|
8 |
+
- python=3.9.16
|
9 |
+
- pytorch=2.0.1
|
10 |
+
- pytorch-cuda=11.7
|
11 |
+
- torchvision=0.15.2
|
12 |
+
- pip
|
13 |
+
- pip:
|
14 |
+
- decord==0.6.0
|
15 |
+
- diffusers==0.15.0
|
16 |
+
- imageio==2.29.0
|
17 |
+
- transformers==4.29.2
|
18 |
+
- xformers==0.0.20
|
19 |
+
- einops
|
20 |
+
- omegaconf
|
huggingface-i2v/__init__.py
ADDED
File without changes
|
huggingface-i2v/requirements.txt
ADDED
File without changes
|
image_to_video/__init__.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import math
|
4 |
+
import docx
|
5 |
+
try:
|
6 |
+
import utils
|
7 |
+
|
8 |
+
from diffusion import create_diffusion
|
9 |
+
from download import find_model
|
10 |
+
except:
|
11 |
+
# sys.path.append(os.getcwd())
|
12 |
+
sys.path.append(os.path.split(sys.path[0])[0])
|
13 |
+
# sys.path[0]
|
14 |
+
# os.path.split(sys.path[0])
|
15 |
+
|
16 |
+
|
17 |
+
import utils
|
18 |
+
|
19 |
+
from diffusion import create_diffusion
|
20 |
+
from download import find_model
|
21 |
+
|
22 |
+
import torch
|
23 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
24 |
+
torch.backends.cudnn.allow_tf32 = True
|
25 |
+
import argparse
|
26 |
+
import torchvision
|
27 |
+
|
28 |
+
from einops import rearrange
|
29 |
+
from models import get_models
|
30 |
+
from torchvision.utils import save_image
|
31 |
+
from diffusers.models import AutoencoderKL
|
32 |
+
from models.clip import TextEmbedder
|
33 |
+
from omegaconf import OmegaConf
|
34 |
+
from PIL import Image
|
35 |
+
import numpy as np
|
36 |
+
from torchvision import transforms
|
37 |
+
sys.path.append("..")
|
38 |
+
from datasets import video_transforms
|
39 |
+
from utils import mask_generation_before
|
40 |
+
from natsort import natsorted
|
41 |
+
from diffusers.utils.import_utils import is_xformers_available
|
42 |
+
|
43 |
+
config_path = "/mnt/petrelfs/zhouyan/project/i2v/configs/sample_i2v.yaml"
|
44 |
+
args = OmegaConf.load(config_path)
|
45 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
+
print(args)
|
47 |
+
|
48 |
+
def model_i2v_fun(args):
|
49 |
+
if args.seed:
|
50 |
+
torch.manual_seed(args.seed)
|
51 |
+
torch.set_grad_enabled(False)
|
52 |
+
if args.ckpt is None:
|
53 |
+
raise ValueError("Please specify a checkpoint path using --ckpt <path>")
|
54 |
+
latent_h = args.image_size[0] // 8
|
55 |
+
latent_w = args.image_size[1] // 8
|
56 |
+
args.image_h = args.image_size[0]
|
57 |
+
args.image_w = args.image_size[1]
|
58 |
+
args.latent_h = latent_h
|
59 |
+
args.latent_w = latent_w
|
60 |
+
print("loading model")
|
61 |
+
model = get_models(args).to(device)
|
62 |
+
|
63 |
+
if args.use_compile:
|
64 |
+
model = torch.compile(model)
|
65 |
+
ckpt_path = args.ckpt
|
66 |
+
state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema']
|
67 |
+
model.load_state_dict(state_dict)
|
68 |
+
|
69 |
+
print('loading success')
|
70 |
+
|
71 |
+
model.eval()
|
72 |
+
pretrained_model_path = args.pretrained_model_path
|
73 |
+
diffusion = create_diffusion(str(args.num_sampling_steps))
|
74 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
|
75 |
+
text_encoder = TextEmbedder(pretrained_model_path).to(device)
|
76 |
+
# if args.use_fp16:
|
77 |
+
# print('Warning: using half precision for inference')
|
78 |
+
# vae.to(dtype=torch.float16)
|
79 |
+
# model.to(dtype=torch.float16)
|
80 |
+
# text_encoder.to(dtype=torch.float16)
|
81 |
+
|
82 |
+
return vae, model, text_encoder, diffusion
|
83 |
+
|
84 |
+
|
85 |
+
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
|
86 |
+
b,f,c,h,w=video_input.shape
|
87 |
+
latent_h = args.image_size[0] // 8
|
88 |
+
latent_w = args.image_size[1] // 8
|
89 |
+
|
90 |
+
# prepare inputs
|
91 |
+
if args.use_fp16:
|
92 |
+
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
|
93 |
+
masked_video = masked_video.to(dtype=torch.float16)
|
94 |
+
mask = mask.to(dtype=torch.float16)
|
95 |
+
else:
|
96 |
+
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
|
97 |
+
|
98 |
+
|
99 |
+
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
|
100 |
+
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
|
101 |
+
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
|
102 |
+
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
|
103 |
+
|
104 |
+
# classifier_free_guidance
|
105 |
+
if args.do_classifier_free_guidance:
|
106 |
+
masked_video = torch.cat([masked_video] * 2)
|
107 |
+
mask = torch.cat([mask] * 2)
|
108 |
+
z = torch.cat([z] * 2)
|
109 |
+
prompt_all = [prompt] + [args.negative_prompt]
|
110 |
+
|
111 |
+
else:
|
112 |
+
masked_video = masked_video
|
113 |
+
mask = mask
|
114 |
+
z = z
|
115 |
+
prompt_all = [prompt]
|
116 |
+
|
117 |
+
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
|
118 |
+
model_kwargs = dict(encoder_hidden_states=text_prompt,
|
119 |
+
class_labels=None,
|
120 |
+
cfg_scale=args.cfg_scale,
|
121 |
+
use_fp16=args.use_fp16,) # tav unet
|
122 |
+
|
123 |
+
# Sample images:
|
124 |
+
if args.sample_method == 'ddim':
|
125 |
+
samples = diffusion.ddim_sample_loop(
|
126 |
+
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
127 |
+
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
128 |
+
)
|
129 |
+
elif args.sample_method == 'ddpm':
|
130 |
+
samples = diffusion.p_sample_loop(
|
131 |
+
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
132 |
+
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
133 |
+
)
|
134 |
+
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
|
135 |
+
if args.use_fp16:
|
136 |
+
samples = samples.to(dtype=torch.float16)
|
137 |
+
|
138 |
+
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
|
139 |
+
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
|
140 |
+
return video_clip
|
141 |
+
|
142 |
+
def get_input(path,args):
|
143 |
+
input_path = path
|
144 |
+
# input_path = args.input_path
|
145 |
+
transform_video = transforms.Compose([
|
146 |
+
video_transforms.ToTensorVideo(), # TCHW
|
147 |
+
video_transforms.ResizeVideo((args.image_h, args.image_w)),
|
148 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
149 |
+
])
|
150 |
+
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
|
151 |
+
if input_path is not None:
|
152 |
+
print(f'loading video from {input_path}')
|
153 |
+
if os.path.isdir(input_path):
|
154 |
+
file_list = os.listdir(input_path)
|
155 |
+
video_frames = []
|
156 |
+
if args.mask_type.startswith('onelast'):
|
157 |
+
num = int(args.mask_type.split('onelast')[-1])
|
158 |
+
# get first and last frame
|
159 |
+
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
|
160 |
+
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
|
161 |
+
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
|
162 |
+
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
|
163 |
+
for i in range(num):
|
164 |
+
video_frames.append(first_frame)
|
165 |
+
# add zeros to frames
|
166 |
+
num_zeros = args.num_frames-2*num
|
167 |
+
for i in range(num_zeros):
|
168 |
+
zeros = torch.zeros_like(first_frame)
|
169 |
+
video_frames.append(zeros)
|
170 |
+
for i in range(num):
|
171 |
+
video_frames.append(last_frame)
|
172 |
+
n = 0
|
173 |
+
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
174 |
+
video_frames = transform_video(video_frames)
|
175 |
+
else:
|
176 |
+
for file in file_list:
|
177 |
+
if file.endswith('jpg') or file.endswith('png'):
|
178 |
+
image = torch.as_tensor(np.array(Image.open(os.path.join(input_path,file)), dtype=np.uint8, copy=True)).unsqueeze(0)
|
179 |
+
video_frames.append(image)
|
180 |
+
else:
|
181 |
+
continue
|
182 |
+
n = 0
|
183 |
+
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
184 |
+
video_frames = transform_video(video_frames)
|
185 |
+
return video_frames, n
|
186 |
+
elif os.path.isfile(input_path):
|
187 |
+
_, full_file_name = os.path.split(input_path)
|
188 |
+
file_name, extention = os.path.splitext(full_file_name)
|
189 |
+
if extention == '.jpg' or extention == '.png':
|
190 |
+
# raise TypeError('a single image is not supported yet!!')
|
191 |
+
print("reading video from a image")
|
192 |
+
video_frames = []
|
193 |
+
num = int(args.mask_type.split('first')[-1])
|
194 |
+
first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0)
|
195 |
+
for i in range(num):
|
196 |
+
video_frames.append(first_frame)
|
197 |
+
num_zeros = args.num_frames-num
|
198 |
+
for i in range(num_zeros):
|
199 |
+
zeros = torch.zeros_like(first_frame)
|
200 |
+
video_frames.append(zeros)
|
201 |
+
n = 0
|
202 |
+
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
203 |
+
video_frames = transform_video(video_frames)
|
204 |
+
return video_frames, n
|
205 |
+
else:
|
206 |
+
raise TypeError(f'{extention} is not supported !!')
|
207 |
+
else:
|
208 |
+
raise ValueError('Please check your path input!!')
|
209 |
+
else:
|
210 |
+
# raise ValueError('Need to give a video or some images')
|
211 |
+
print('given video is None, using text to video')
|
212 |
+
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
|
213 |
+
args.mask_type = 'all'
|
214 |
+
video_frames = transform_video(video_frames)
|
215 |
+
n = 0
|
216 |
+
return video_frames, n
|
217 |
+
|
218 |
+
def setup_seed(seed):
|
219 |
+
torch.manual_seed(seed)
|
220 |
+
torch.cuda.manual_seed_all(seed)
|
221 |
+
|
image_to_video/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (13.4 kB). View file
|
|
input/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png
ADDED
input/i2v/The_picture_shows_the_beauty_of_the_sea.png
ADDED
input/i2v/The_picture_shows_the_beauty_of_the_sea_and_at_the_same.png
ADDED