Create ai.py
Browse files
ai.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: disable=W0707
|
2 |
+
# pylint: disable=W0719
|
3 |
+
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import tiktoken
|
7 |
+
import openai
|
8 |
+
from openai import OpenAI
|
9 |
+
import requests
|
10 |
+
|
11 |
+
from constants.cli import OPENAI_MODELS
|
12 |
+
from constants.ai import SYSTEM_PROMPT, PROMPT, API_URL
|
13 |
+
|
14 |
+
|
15 |
+
def retrieve(query, k=10, filters=None):
|
16 |
+
"""Retrieves and returns dict.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
query (str): User query to pass in
|
20 |
+
openai_api_key (str): openai api key. If not passed in, uses environment variable
|
21 |
+
k (int, optional): number of results passed back. Defaults to 10.
|
22 |
+
filters (dict, optional): Filters to apply to the query. You can filter based off
|
23 |
+
any piece of metadata by passing in a dict of the format {metadata_name: filter_value}
|
24 |
+
ie {"library_id": "1234"}.
|
25 |
+
|
26 |
+
See the README for more details:
|
27 |
+
https://github.com/fleet-ai/context/tree/main#using-fleet-contexts-rich-metadata
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
list: List of queried results
|
31 |
+
"""
|
32 |
+
|
33 |
+
url = f"{API_URL}/query"
|
34 |
+
params = {
|
35 |
+
"query": query,
|
36 |
+
"dataset": "python_libraries",
|
37 |
+
"n_results": k,
|
38 |
+
"filters": filters,
|
39 |
+
}
|
40 |
+
return requests.post(url, json=params, timeout=120).json()
|
41 |
+
|
42 |
+
|
43 |
+
def retrieve_context(query, openai_api_key, k=10, filters=None):
|
44 |
+
"""Gets the context from our libraries vector db for a given query.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
query (str): User input query
|
48 |
+
k (int, optional): number of retrieved results. Defaults to 10.
|
49 |
+
"""
|
50 |
+
|
51 |
+
# First, we query the API
|
52 |
+
responses = retrieve(query, k=k, filters=filters)
|
53 |
+
|
54 |
+
# Then, we build the prompt_with_context string
|
55 |
+
prompt_with_context = ""
|
56 |
+
for response in responses:
|
57 |
+
prompt_with_context += f"\n\n### Context {response['metadata']['url']} ###\n{response['metadata']['text']}"
|
58 |
+
return {"role": "user", "content": prompt_with_context}
|
59 |
+
|
60 |
+
|
61 |
+
def construct_prompt(
|
62 |
+
messages,
|
63 |
+
context_message,
|
64 |
+
model="gpt-4-1106-preview",
|
65 |
+
cite_sources=True,
|
66 |
+
context_window=3000,
|
67 |
+
):
|
68 |
+
"""
|
69 |
+
Constructs a RAG (Retrieval-Augmented Generation) prompt by balancing the token count of messages and context_message.
|
70 |
+
If the total token count exceeds the maximum limit, it adjusts the token count of each to maintain a 1:1 proportion.
|
71 |
+
It then combines both lists and returns the result.
|
72 |
+
|
73 |
+
Parameters:
|
74 |
+
messages (List[dict]): List of messages to be included in the prompt.
|
75 |
+
context_message (dict): Context message to be included in the prompt.
|
76 |
+
model (str): The model to be used for encoding, default is "gpt-4-1106-preview".
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
List[dict]: The constructed RAG prompt.
|
80 |
+
"""
|
81 |
+
# Get the encoding; default to cl100k_base
|
82 |
+
if model in OPENAI_MODELS:
|
83 |
+
encoding = tiktoken.encoding_for_model(model)
|
84 |
+
else:
|
85 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
86 |
+
|
87 |
+
# 1) calculate tokens
|
88 |
+
reserved_space = 1000
|
89 |
+
max_messages_count = int((context_window - reserved_space) / 2)
|
90 |
+
max_context_count = int((context_window - reserved_space) / 2)
|
91 |
+
|
92 |
+
# 2) construct prompt
|
93 |
+
prompts = messages.copy()
|
94 |
+
prompts.insert(0, {"role": "system", "content": SYSTEM_PROMPT})
|
95 |
+
if cite_sources:
|
96 |
+
prompts.insert(-1, {"role": "user", "content": PROMPT})
|
97 |
+
|
98 |
+
# 3) find how many tokens each list has
|
99 |
+
messages_token_count = len(
|
100 |
+
encoding.encode(
|
101 |
+
"\n".join(
|
102 |
+
[
|
103 |
+
f"<|im_start|>{message['role']}\n{message['content']}<|im_end|>"
|
104 |
+
for message in prompts
|
105 |
+
]
|
106 |
+
)
|
107 |
+
)
|
108 |
+
)
|
109 |
+
context_token_count = len(
|
110 |
+
encoding.encode(
|
111 |
+
f"<|im_start|>{context_message['role']}\n{context_message['content']}<|im_end|>"
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
# 4) Balance the token count for each
|
116 |
+
if (messages_token_count + context_token_count) > (context_window - reserved_space):
|
117 |
+
# context has more than limit, messages has less than limit
|
118 |
+
if (messages_token_count < max_messages_count) and (
|
119 |
+
context_token_count > max_context_count
|
120 |
+
):
|
121 |
+
max_context_count += max_messages_count - messages_token_count
|
122 |
+
# messages has more than limit, context has less than limit
|
123 |
+
elif (messages_token_count > max_messages_count) and (
|
124 |
+
context_token_count < max_context_count
|
125 |
+
):
|
126 |
+
max_messages_count += max_context_count - context_token_count
|
127 |
+
|
128 |
+
# 5) Cut each list to the max count
|
129 |
+
|
130 |
+
# Cut down messages
|
131 |
+
while messages_token_count > max_messages_count:
|
132 |
+
removed_encoding = encoding.encode(
|
133 |
+
f"<|im_start|>{prompts[1]['role']}\n{prompts[1]['content']}<|im_end|>"
|
134 |
+
)
|
135 |
+
messages_token_count -= len(removed_encoding)
|
136 |
+
if messages_token_count < max_messages_count:
|
137 |
+
prompts = (
|
138 |
+
[prompts[0]]
|
139 |
+
+ [
|
140 |
+
{
|
141 |
+
"role": prompts[1]["role"],
|
142 |
+
"content": encoding.decode(
|
143 |
+
removed_encoding[
|
144 |
+
: min(
|
145 |
+
int(max_messages_count -
|
146 |
+
messages_token_count),
|
147 |
+
len(removed_encoding),
|
148 |
+
)
|
149 |
+
]
|
150 |
+
)
|
151 |
+
.replace("<|im_start|>", "")
|
152 |
+
.replace("<|im_end|>", ""),
|
153 |
+
}
|
154 |
+
]
|
155 |
+
+ prompts[2:]
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
prompts = [prompts[0]] + prompts[2:]
|
159 |
+
|
160 |
+
# Cut down context
|
161 |
+
if context_token_count > max_context_count:
|
162 |
+
# Taking a proportion of the content chars length
|
163 |
+
reduced_chars_length = int(
|
164 |
+
len(context_message["content"]) *
|
165 |
+
(max_context_count / context_token_count)
|
166 |
+
)
|
167 |
+
context_message["content"] = context_message["content"][:reduced_chars_length]
|
168 |
+
|
169 |
+
# 6) Combine both lists
|
170 |
+
prompts.insert(-1, context_message)
|
171 |
+
|
172 |
+
return prompts
|
173 |
+
|
174 |
+
|
175 |
+
def get_remote_chat_response(messages, model="gpt-4-1106-preview"):
|
176 |
+
"""
|
177 |
+
Returns a streamed OpenAI chat response.
|
178 |
+
|
179 |
+
Parameters:
|
180 |
+
messages (List[dict]): List of messages to be included in the prompt.
|
181 |
+
model (str): The model to be used for encoding, default is "gpt-4-1106-preview".
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
str: The streamed OpenAI chat response.
|
185 |
+
"""
|
186 |
+
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
187 |
+
|
188 |
+
try:
|
189 |
+
response = client.chat.completions.create(
|
190 |
+
model=model, messages=messages, temperature=0.2, stream=True
|
191 |
+
)
|
192 |
+
|
193 |
+
for chunk in response:
|
194 |
+
current_context = chunk.choices[0].delta.content
|
195 |
+
yield current_context
|
196 |
+
|
197 |
+
except openai.AuthenticationError as error:
|
198 |
+
print("401 Authentication Error:", error)
|
199 |
+
raise Exception(
|
200 |
+
"Invalid OPENAI_API_KEY. Please re-run with a valid key.")
|
201 |
+
|
202 |
+
except Exception as error:
|
203 |
+
print("Streaming Error:", error)
|
204 |
+
raise Exception("Internal Server Error")
|
205 |
+
|
206 |
+
|
207 |
+
def get_other_chat_response(messages, model="local-model"):
|
208 |
+
"""
|
209 |
+
Returns a streamed chat response from a local server.
|
210 |
+
|
211 |
+
Parameters:
|
212 |
+
messages (List[dict]): List of messages to be included in the prompt.
|
213 |
+
model (str): The model to be used for encoding, default is "gpt-4-1106-preview".
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
str: The streamed chat response.
|
217 |
+
"""
|
218 |
+
try:
|
219 |
+
if model == "local-model":
|
220 |
+
url = "http://localhost:1234/v1/chat/completions"
|
221 |
+
headers = {"Content-Type": "application/json"}
|
222 |
+
data = {
|
223 |
+
"messages": messages,
|
224 |
+
"temperature": 0.2,
|
225 |
+
"max_tokens": -1,
|
226 |
+
"stream": True,
|
227 |
+
}
|
228 |
+
response = requests.post(
|
229 |
+
url, headers=headers, data=json.dumps(data), stream=True, timeout=120
|
230 |
+
)
|
231 |
+
|
232 |
+
if response.status_code == 200:
|
233 |
+
for chunk in response.iter_content(chunk_size=None):
|
234 |
+
decoded_chunk = chunk.decode()
|
235 |
+
if (
|
236 |
+
"data:" in decoded_chunk
|
237 |
+
and decoded_chunk.split("data:")[1].strip()
|
238 |
+
): # Check if the chunk is not empty
|
239 |
+
try:
|
240 |
+
chunk_dict = json.loads(
|
241 |
+
decoded_chunk.split("data:")[1].strip()
|
242 |
+
)
|
243 |
+
yield chunk_dict["choices"][0]["delta"].get("content", "")
|
244 |
+
except json.JSONDecodeError:
|
245 |
+
pass
|
246 |
+
else:
|
247 |
+
print(f"Error: {response.status_code}, {response.text}")
|
248 |
+
raise Exception("Internal Server Error")
|
249 |
+
else:
|
250 |
+
if not os.environ.get("OPENROUTER_API_KEY"):
|
251 |
+
raise Exception(
|
252 |
+
f"For non-OpenAI models, like {model}, set your OPENROUTER_API_KEY."
|
253 |
+
)
|
254 |
+
|
255 |
+
response = requests.post(
|
256 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
257 |
+
headers={
|
258 |
+
"Authorization": f"Bearer {os.environ.get('OPENROUTER_API_KEY')}",
|
259 |
+
"HTTP-Referer": os.environ.get(
|
260 |
+
"OPENROUTER_APP_URL", "https://fleet.so/context"
|
261 |
+
),
|
262 |
+
"X-Title": os.environ.get("OPENROUTER_APP_TITLE", "Fleet Context"),
|
263 |
+
"Content-Type": "application/json",
|
264 |
+
},
|
265 |
+
data=json.dumps(
|
266 |
+
{"model": model, "messages": messages, "stream": True}),
|
267 |
+
stream=True,
|
268 |
+
timeout=120,
|
269 |
+
)
|
270 |
+
if response.status_code == 200:
|
271 |
+
for chunk in response.iter_lines():
|
272 |
+
decoded_chunk = chunk.decode("utf-8")
|
273 |
+
if (
|
274 |
+
"data:" in decoded_chunk
|
275 |
+
and decoded_chunk.split("data:")[1].strip()
|
276 |
+
): # Check if the chunk is not empty
|
277 |
+
try:
|
278 |
+
chunk_dict = json.loads(
|
279 |
+
decoded_chunk.split("data:")[1].strip()
|
280 |
+
)
|
281 |
+
yield chunk_dict["choices"][0]["delta"].get("content", "")
|
282 |
+
except json.JSONDecodeError:
|
283 |
+
pass
|
284 |
+
else:
|
285 |
+
print(f"Error: {response.status_code}, {response.text}")
|
286 |
+
raise Exception("Internal Server Error")
|
287 |
+
|
288 |
+
except requests.exceptions.RequestException as error:
|
289 |
+
print("Request Error:", error)
|
290 |
+
raise Exception(
|
291 |
+
"Invalid request. Please check your request parameters.")
|