Shanks0465
commited on
Commit
•
d9ae7cd
1
Parent(s):
33f37c9
Added app.py
Browse files- app.py +44 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicNER")
|
6 |
+
|
7 |
+
model = AutoModelForTokenClassification.from_pretrained("ai4bharat/IndicNER")
|
8 |
+
|
9 |
+
|
10 |
+
def get_ner(sentence):
|
11 |
+
tok_sentence = tokenizer(sentence, return_tensors='pt')
|
12 |
+
|
13 |
+
with torch.no_grad():
|
14 |
+
logits = model(**tok_sentence).logits.argmax(-1)
|
15 |
+
predicted_tokens_classes = [
|
16 |
+
model.config.id2label[t.item()] for t in logits[0]]
|
17 |
+
|
18 |
+
predicted_labels = []
|
19 |
+
|
20 |
+
previous_token_id = 0
|
21 |
+
word_ids = tok_sentence.word_ids()
|
22 |
+
for word_index in range(len(word_ids)):
|
23 |
+
if word_ids[word_index] == None:
|
24 |
+
previous_token_id = word_ids[word_index]
|
25 |
+
elif word_ids[word_index] == previous_token_id:
|
26 |
+
previous_token_id = word_ids[word_index]
|
27 |
+
else:
|
28 |
+
predicted_labels.append(predicted_tokens_classes[word_index])
|
29 |
+
previous_token_id = word_ids[word_index]
|
30 |
+
|
31 |
+
ner_output = []
|
32 |
+
for index in range(len(sentence.split(' '))):
|
33 |
+
ner_output.append(
|
34 |
+
(sentence.split(' ')[index], predicted_labels[index]))
|
35 |
+
return ner_output
|
36 |
+
|
37 |
+
|
38 |
+
iface = gr.Interface(get_ner,
|
39 |
+
gr.Textbox(placeholder="Enter sentence here..."),
|
40 |
+
["highlight"], examples=['लगातार हमलावर हो रहे शिवपाल और राजभर को सपा की दो टूक, चिट्ठी जारी कर कहा- जहां जाना चाहें जा सकते हैं', 'ಶರಣ್ ರ ನೀವು ನೋಡಲೇಬೇಕಾದ ಟಾಪ್ 5 ಕಾಮಿಡಿ ಚಲನಚಿತ್ರಗಳು'], title='IndicNER',
|
41 |
+
article='IndicNER is a model trained to complete the task of identifying named entities from sentences in Indian languages. Our model is specifically fine-tuned to the 11 Indian languages mentioned above over millions of sentences. The model is then benchmarked over a human annotated testset and multiple other publicly available Indian NER datasets. The 11 languages covered by IndicNER are: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu.'
|
42 |
+
)
|
43 |
+
|
44 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
sentencepiece==0.1.95
|
4 |
+
datasets
|
5 |
+
seqeval
|