|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
import spaces |
|
from PIL import Image |
|
|
|
import subprocess |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
models = { |
|
'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True).eval(), |
|
'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True).eval(), |
|
} |
|
|
|
processors = { |
|
'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True), |
|
'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True), |
|
} |
|
|
|
title = """<h1 align="center">Florence-2 Captioner for Flux Prompts</h1> |
|
<p><center> |
|
<a href="https://huggingface.co/gokaygokay/Florence-2-Flux-Large" target="_blank">[Florence-2 Flux Large]</a> |
|
<a href="https://huggingface.co/gokaygokay/Florence-2-Flux" target="_blank">[Florence-2 Flux Base]</a> |
|
</center></p> |
|
""" |
|
|
|
@spaces.GPU |
|
def run_example(image, model_name='gokaygokay/Florence-2-Flux-Large'): |
|
image = Image.fromarray(image) |
|
task_prompt = "<DESCRIPTION>" |
|
prompt = task_prompt + "Describe this image in great detail." |
|
|
|
if image.mode != "RGB": |
|
image = image.convert("RGB") |
|
|
|
model = models[model_name] |
|
processor = processors[model_name] |
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
num_beams=3, |
|
repetition_penalty=1.10, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) |
|
return parsed_answer["<DESCRIPTION>"] |
|
|
|
with gr.Blocks(theme='bethecloud/storj_theme') as demo: |
|
gr.HTML(title) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Picture") |
|
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='gokaygokay/Florence-2-Flux-Large') |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
|
|
gr.Examples( |
|
[["image1.jpg"], |
|
["image2.jpg"], |
|
["image3.png"], |
|
["image5.jpg"]], |
|
inputs=[input_img, model_selector], |
|
outputs=[output_text], |
|
fn=run_example, |
|
label='Try captioning on below examples' |
|
) |
|
|
|
submit_btn.click(run_example, [input_img, model_selector], [output_text]) |
|
|
|
demo.launch(debug=True) |