Spaces:
Sleeping
Sleeping
File size: 6,251 Bytes
30ef6e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import re
import struct
import binascii
import datetime
import csv
import json
import requests
from transformers import AutoTokenizer, AutoModel
import torch
from torch import Tensor
import torch.nn.functional as F
import numpy as np
from scipy.spatial.distance import cdist
from duckduckgo_search import DDGS
from bs4 import BeautifulSoup
model_name = "intfloat/multilingual-e5-large"
input_dir = 'input'
vectors_dir = 'vectors'
model = None
tokenizer = None
device = None
vectors = {}
os.makedirs(input_dir, exist_ok=True)
os.makedirs(vectors_dir, exist_ok=True)
def ddg(text, max_results = 5):
with DDGS() as ddgs:
results = [r for r in ddgs.text(text, max_results=max_results)]
print(results)
return results
def bs4(url):
html = requests.get(url).text
soup = BeautifulSoup(html, features="html.parser")
# kill all script and style elements
for script in soup(["script", "style"]):
script.extract() # rip it out
# get text
text = soup.get_text()
# break into lines and remove leading and trailing space on each
lines = (line.strip() for line in text.splitlines())
# break multi-headlines into a line each
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
# drop blank lines
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
def upload(name, filename, content):
os.makedirs(f"{input_dir}/{name}", exist_ok=True)
srcpath = f"{input_dir}/{name}/{filename}"
with open(srcpath, 'w', encoding='utf-8') as f:
f.write(content)
def delete(name, filename):
srcpath = f"{input_dir}/{name}/{filename}"
dstpath = f"{vectors_dir}/{name}/{filename}"
if os.path.exists(srcpath):
os.unlink(srcpath)
if os.path.exists(dstpath):
os.unlink(dstpath)
def load_model():
global model, tokenizer, device
tokenizer = AutoTokenizer.from_pretrained(model_name)
# CUDAが利用可能かチェックし、利用可能であればデバイスをCUDAに設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# モデルをデバイスに移動
model = AutoModel.from_pretrained(model_name).to(device)
def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
def cosine_similarity(v1, v2):
return 1 - cdist([v1], [v2], 'cosine')[0][0]
def embedding():
for name in os.listdir(input_dir):
os.makedirs(f"{input_dir}/{name}", exist_ok=True)
os.makedirs(f"{vectors_dir}/{name}", exist_ok=True)
for filename in os.listdir(f"{input_dir}/{name}"):
embedding_file(name, filename)
def embedding_file(name, filename):
srcpath = f"{input_dir}/{name}/{filename}"
dstpath = f"{vectors_dir}/{name}/{filename}"
if os.path.isdir(srcpath):
return
if os.path.exists(dstpath):
return
print(srcpath)
chunks = []
with open(srcpath, 'r', encoding='utf-8') as csv_file:
reader = csv.reader(csv_file)
for r in reader:
if not r:
continue
if r[0] == 'chunk': # header
continue
if len(r) == 1:
r.append('')
chunks.append(r)
# CSVファイルを開き、書き込みます
with open(dstpath, mode='w', encoding='utf-8', newline='') as csv_file:
fieldnames = ['chunk', 'output', 'vector']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for r in chunks:
writer.writerow({'chunk': r[0], 'output': r[1], 'vector': get_vector_string(r[0])})
def get_vector_string(chunk):
global model, tokenizer, device
inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad(): # 勾配計算を不要にする
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
vector_string = ",".join([hex(struct.unpack('>Q', struct.pack('>d', x))[0])[2:-7] for x in embeddings[0].cpu().numpy()]) # ベクトルを文字列に変換
return vector_string
def load_vectors():
global vectors
vectors = {}
for name in os.listdir(vectors_dir):
vectors[name] = []
for filename in os.listdir(f"{vectors_dir}/{name}"):
filepath = f"{vectors_dir}/{name}/{filename}"
with open(filepath, mode='r', encoding='utf-8') as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
vector = np.array([struct.unpack('>d', binascii.unhexlify(x+'0000000'))[0] for x in row['vector'].split(',')])
vectors[name].append([row['chunk'], row['output'], vector])
def search(name, query_text):
dt = datetime.datetime.now()
# クエリテキストをエンベディング
inputs = tokenizer(query_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
query_embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
query_embeddings = F.normalize(query_embeddings, p=2, dim=1).cpu().numpy()[0]
# CSVファイルを読み込み、各レコードとクエリの類似度を計算
similarities = []
for row in vectors[name]:
similarity = cosine_similarity(query_embeddings, row[2])
similarities.append((row, similarity))
# 類似度でソートし、上位3つの結果を取得
top_matches = sorted(similarities, key=lambda x: x[1], reverse=True)[:3]
result = ''
for i, (row, similarity) in enumerate(top_matches, 1):
if not row[1]:
row[1] = row[0]
result += f"#{i} {similarity*100:.2f}%\n{row[1]}\n\n"
print(result)
print(datetime.datetime.now() - dt)
return result
load_model()
load_vectors()
if __name__ == '__main__':
embedding()
|