File size: 3,072 Bytes
035e10c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""This package contains modules related to objective functions, optimizations, and network architectures.

To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
You need to implement the following five functions:
    -- <__init__>:                      initialize the class; first call BaseModel.__init__(self, opt).
    -- <set_input>:                     unpack data from dataset and apply preprocessing.
    -- <forward>:                       produce intermediate results.
    -- <optimize_parameters>:           calculate loss, gradients, and update network weights.
    -- <modify_commandline_options>:    (optionally) add model-specific options and set default options.

In the function <__init__>, you need to define four lists:
    -- self.loss_names (str list):          specify the training losses that you want to plot and save.
    -- self.model_names (str list):         define networks used in our training.
    -- self.visual_names (str list):        specify the images that you want to display and save.
    -- self.optimizers (optimizer list):    define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.

Now you can use the model class by specifying flag '--model dummy'.
See our template model class 'template_model.py' for more details.
"""

import importlib
from models.base_model import BaseModel


def find_model_using_name(model_name):
    """Import the module "models/[model_name]_model.py".

    In the file, the class called DatasetNameModel() will
    be instantiated. It has to be a subclass of BaseModel,
    and it is case-insensitive.
    """
    model_filename = "models." + model_name + "_model"
    modellib = importlib.import_module(model_filename)
    model = None
    target_model_name = model_name.replace('_', '') + 'model'
    for name, cls in modellib.__dict__.items():
        if name.lower() == target_model_name.lower() \
           and issubclass(cls, BaseModel):
            model = cls

    if model is None:
        print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
        exit(0)

    return model


def get_option_setter(model_name):
    """Return the static method <modify_commandline_options> of the model class."""
    model_class = find_model_using_name(model_name)
    return model_class.modify_commandline_options


def create_model(opt):
    """Create a model given the option.

    This function warps the class CustomDatasetDataLoader.
    This is the main interface between this package and 'train.py'/'test.py'

    Example:
        >>> from models import create_model
        >>> model = create_model(opt)
    """
    model = find_model_using_name(opt.model)
    instance = model(opt)
    print("model [%s] was created" % type(instance).__name__)
    return instance