PaintTransformer / morphology.py
akhaliq3
inference update
1a2ae11
raw
history blame
1.58 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
class Erosion2d(nn.Module):
def __init__(self, m=1):
super(Erosion2d, self).__init__()
self.m = m
self.pad = [m, m, m, m]
self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1)
def forward(self, x):
batch_size, c, h, w = x.shape
x_pad = F.pad(x, pad=self.pad, mode='constant', value=1e9)
channel = self.unfold(x_pad).view(batch_size, c, -1, h, w)
result = torch.min(channel, dim=2)[0]
return result
def erosion(x, m=1):
b, c, h, w = x.shape
x_pad = F.pad(x, pad=[m, m, m, m], mode='constant', value=1e9)
channel = nn.functional.unfold(x_pad, 2 * m + 1, padding=0, stride=1).view(b, c, -1, h, w)
result = torch.min(channel, dim=2)[0]
return result
class Dilation2d(nn.Module):
def __init__(self, m=1):
super(Dilation2d, self).__init__()
self.m = m
self.pad = [m, m, m, m]
self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1)
def forward(self, x):
batch_size, c, h, w = x.shape
x_pad = F.pad(x, pad=self.pad, mode='constant', value=-1e9)
channel = self.unfold(x_pad).view(batch_size, c, -1, h, w)
result = torch.max(channel, dim=2)[0]
return result
def dilation(x, m=1):
b, c, h, w = x.shape
x_pad = F.pad(x, pad=[m, m, m, m], mode='constant', value=-1e9)
channel = nn.functional.unfold(x_pad, 2 * m + 1, padding=0, stride=1).view(b, c, -1, h, w)
result = torch.max(channel, dim=2)[0]
return result