import torch import torch.nn as nn import torch.nn.functional as F class Erosion2d(nn.Module): def __init__(self, m=1): super(Erosion2d, self).__init__() self.m = m self.pad = [m, m, m, m] self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1) def forward(self, x): batch_size, c, h, w = x.shape x_pad = F.pad(x, pad=self.pad, mode='constant', value=1e9) for i in range(c): channel = self.unfold(x_pad[:, [i], :, :]) channel = torch.min(channel, dim=1, keepdim=True)[0] channel = channel.view([batch_size, 1, h, w]) x[:, [i], :, :] = channel return x class Dilation2d(nn.Module): def __init__(self, m=1): super(Dilation2d, self).__init__() self.m = m self.pad = [m, m, m, m] self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1) def forward(self, x): batch_size, c, h, w = x.shape x_pad = F.pad(x, pad=self.pad, mode='constant', value=-1e9) for i in range(c): channel = self.unfold(x_pad[:, [i], :, :]) channel = torch.max(channel, dim=1, keepdim=True)[0] channel = channel.view([batch_size, 1, h, w]) x[:, [i], :, :] = channel return x