import torch import torch.nn.functional as F import numpy as np from PIL import Image import os os.system('pip freeze') import network import morphology import math import gradio as gr from torchvision import transforms import torchtext from stat import ST_CTIME from datetime import datetime, timedelta import shutil print(torch.cuda.is_available()) # Images torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2021/08/04/14/16/tower-6521842_1280.jpg', 'tower.jpg') torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2017/08/31/05/36/buildings-2699520_1280.jpg', 'city.jpg') idx = 0 os.system("gdown https://drive.google.com/uc?id=1NDD54BLligyr8tzo8QGI5eihZisXK1nq") def to_PIL_img(img): result = Image.fromarray((img.data.cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8)) return result def save_img(img, output_path): to_PIL_img(img).save(output_path) def param2stroke(param, H, W, meta_brushes): """ Input a set of stroke parameters and output its corresponding foregrounds and alpha maps. Args: param: a tensor with shape n_strokes x n_param_per_stroke. Here, param_per_stroke is 8: x_center, y_center, width, height, theta, R, G, and B. H: output height. W: output width. meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width. The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush. Returns: foregrounds: a tensor with shape n_strokes x 3 x H x W, containing color information. alphas: a tensor with shape n_strokes x 3 x H x W, containing binary information of whether a pixel is belonging to the stroke (alpha mat), for painting process. """ # Firstly, resize the meta brushes to the required shape, # in order to decrease GPU memory especially when the required shape is small. meta_brushes_resize = F.interpolate(meta_brushes, (H, W)) b = param.shape[0] # Extract shape parameters and color parameters. param_list = torch.split(param, 1, dim=1) x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]] R, G, B = param_list[5:] # Pre-compute sin theta and cos theta sin_theta = torch.sin(torch.acos(torch.tensor(-1., device=param.device)) * theta) cos_theta = torch.cos(torch.acos(torch.tensor(-1., device=param.device)) * theta) # index means each stroke should use which meta stroke? Vertical meta stroke or horizontal meta stroke. # When h > w, vertical stroke should be used. When h <= w, horizontal stroke should be used. index = torch.full((b,), -1, device=param.device, dtype=torch.long) index[h > w] = 0 index[h <= w] = 1 brush = meta_brushes_resize[index.long()] # Calculate warp matrix according to the rules defined by pytorch, in order for warping. warp_00 = cos_theta / w warp_01 = sin_theta * H / (W * w) warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w) warp_10 = -sin_theta * W / (H * h) warp_11 = cos_theta / h warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h) warp_0 = torch.stack([warp_00, warp_01, warp_02], dim=1) warp_1 = torch.stack([warp_10, warp_11, warp_12], dim=1) warp = torch.stack([warp_0, warp_1], dim=1) # Conduct warping. grid = F.affine_grid(warp, [b, 3, H, W], align_corners=False) brush = F.grid_sample(brush, grid, align_corners=False) # alphas is the binary information suggesting whether a pixel is belonging to the stroke. alphas = (brush > 0).float() brush = brush.repeat(1, 3, 1, 1) alphas = alphas.repeat(1, 3, 1, 1) # Give color to foreground strokes. color_map = torch.cat([R, G, B], dim=1) color_map = color_map.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, H, W) foreground = brush * color_map # Dilation and erosion are used for foregrounds and alphas respectively to prevent artifacts on stroke borders. foreground = morphology.dilation(foreground) alphas = morphology.erosion(alphas) return foreground, alphas def param2img_serial( param, decision, meta_brushes, cur_canvas, frame_dir, has_border=False, original_h=None, original_w=None, *, all_frames): """ Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory, and whether there is a border (if intermediate painting results are required). Output the painting results of adding the corresponding strokes on the current canvas. Args: param: a tensor with shape batch size x patch along height dimension x patch along width dimension x n_stroke_per_patch x n_param_per_stroke decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension x n_stroke_per_patch meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width. The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush. cur_canvas: a tensor with shape batch size x 3 x H x W, where H and W denote height and width of padded results of original images. frame_dir: directory to save intermediate painting results. None means intermediate results are not required. has_border: on the last painting layer, in order to make sure that the painting results do not miss any important detail, we choose to paint again on this layer but shift patch_size // 2 pixels when cutting patches. In this case, if intermediate results are required, we need to cut the shifted length on the border before saving, or there would be a black border. original_h: to indicate the original height for cropping when saving intermediate results. original_w: to indicate the original width for cropping when saving intermediate results. Returns: cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results. """ # param: b, h, w, stroke_per_patch, param_per_stroke # decision: b, h, w, stroke_per_patch b, h, w, s, p = param.shape H, W = cur_canvas.shape[-2:] is_odd_y = h % 2 == 1 is_odd_x = w % 2 == 1 patch_size_y = 2 * H // h patch_size_x = 2 * W // w even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device) even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device) odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device) odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device) even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x]) odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x]) even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x]) odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x]) cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4, patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0]) def partial_render(this_canvas, patch_coord_y, patch_coord_x, stroke_id): canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x), stride=(patch_size_y // 2, patch_size_x // 2)) # canvas_patch: b, 3 * py * px, h * w canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous() canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous() # canvas_patch: b, h, w, 3, py, px selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :] selected_h, selected_w = selected_canvas_patch.shape[1:3] selected_param = param[:, patch_coord_y, patch_coord_x, stroke_id, :].view(-1, p).contiguous() selected_decision = decision[:, patch_coord_y, patch_coord_x, stroke_id].view(-1).contiguous() selected_foregrounds = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x, device=this_canvas.device) selected_alphas = torch.zeros(selected_param.shape[0], 3, patch_size_y, patch_size_x, device=this_canvas.device) if selected_param[selected_decision, :].shape[0] > 0: selected_foregrounds[selected_decision, :, :, :], selected_alphas[selected_decision, :, :, :] = param2stroke(selected_param[selected_decision, :], patch_size_y, patch_size_x, meta_brushes) selected_foregrounds = selected_foregrounds.view( b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous() selected_alphas = selected_alphas.view(b, selected_h, selected_w, 3, patch_size_y, patch_size_x).contiguous() selected_decision = selected_decision.view(b, selected_h, selected_w, 1, 1, 1).contiguous() selected_canvas_patch = selected_foregrounds * selected_alphas * selected_decision + selected_canvas_patch * ( 1 - selected_alphas * selected_decision) this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous() # this_canvas: b, 3, selected_h, py, selected_w, px this_canvas = this_canvas.view(b, 3, selected_h * patch_size_y, selected_w * patch_size_x).contiguous() # this_canvas: b, 3, selected_h * py, selected_w * px return this_canvas global idx if has_border: factor = 2 else: factor = 4 def store_frame(img): all_frames.append(to_PIL_img(img)) if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0: for i in range(s): canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x, i) if not is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2) if not is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas idx += 1 if frame_dir is not None: frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor, patch_size_x // factor:-patch_size_x // factor], original_h, original_w) save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx)) store_frame(frame[0]) if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0: for i in range(s): canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x, i) canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2) canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3) if is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2) if is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas idx += 1 if frame_dir is not None: frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor, patch_size_x // factor:-patch_size_x // factor], original_h, original_w) save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx)) store_frame(frame[0]) if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0: for i in range(s): canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x, i) canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2) if is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2) if not is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas idx += 1 if frame_dir is not None: frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor, patch_size_x // factor:-patch_size_x // factor], original_h, original_w) save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx)) store_frame(frame[0]) if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0: for i in range(s): canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x, i) canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3) if not is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2) if is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas idx += 1 if frame_dir is not None: frame = crop(cur_canvas[:, :, patch_size_y // factor:-patch_size_y // factor, patch_size_x // factor:-patch_size_x // factor], original_h, original_w) save_img(frame[0], os.path.join(frame_dir, '%03d.jpg' % idx)) store_frame(frame[0]) cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4] return cur_canvas def param2img_parallel(param, decision, meta_brushes, cur_canvas): """ Input stroke parameters and decisions for each patch, meta brushes, current canvas, frame directory, and whether there is a border (if intermediate painting results are required). Output the painting results of adding the corresponding strokes on the current canvas. Args: param: a tensor with shape batch size x patch along height dimension x patch along width dimension x n_stroke_per_patch x n_param_per_stroke decision: a 01 tensor with shape batch size x patch along height dimension x patch along width dimension x n_stroke_per_patch meta_brushes: a tensor with shape 2 x 3 x meta_brush_height x meta_brush_width. The first slice on the batch dimension denotes vertical brush and the second one denotes horizontal brush. cur_canvas: a tensor with shape batch size x 3 x H x W, where H and W denote height and width of padded results of original images. Returns: cur_canvas: a tensor with shape batch size x 3 x H x W, denoting painting results. """ # param: b, h, w, stroke_per_patch, param_per_stroke # decision: b, h, w, stroke_per_patch b, h, w, s, p = param.shape param = param.view(-1, 8).contiguous() decision = decision.view(-1).contiguous().bool() H, W = cur_canvas.shape[-2:] is_odd_y = h % 2 == 1 is_odd_x = w % 2 == 1 patch_size_y = 2 * H // h patch_size_x = 2 * W // w even_idx_y = torch.arange(0, h, 2, device=cur_canvas.device) even_idx_x = torch.arange(0, w, 2, device=cur_canvas.device) odd_idx_y = torch.arange(1, h, 2, device=cur_canvas.device) odd_idx_x = torch.arange(1, w, 2, device=cur_canvas.device) even_y_even_x_coord_y, even_y_even_x_coord_x = torch.meshgrid([even_idx_y, even_idx_x]) odd_y_odd_x_coord_y, odd_y_odd_x_coord_x = torch.meshgrid([odd_idx_y, odd_idx_x]) even_y_odd_x_coord_y, even_y_odd_x_coord_x = torch.meshgrid([even_idx_y, odd_idx_x]) odd_y_even_x_coord_y, odd_y_even_x_coord_x = torch.meshgrid([odd_idx_y, even_idx_x]) cur_canvas = F.pad(cur_canvas, [patch_size_x // 4, patch_size_x // 4, patch_size_y // 4, patch_size_y // 4, 0, 0, 0, 0]) foregrounds = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device) alphas = torch.zeros(param.shape[0], 3, patch_size_y, patch_size_x, device=cur_canvas.device) valid_foregrounds, valid_alphas = param2stroke(param[decision, :], patch_size_y, patch_size_x, meta_brushes) foregrounds[decision, :, :, :] = valid_foregrounds alphas[decision, :, :, :] = valid_alphas # foreground, alpha: b * h * w * stroke_per_patch, 3, patch_size_y, patch_size_x foregrounds = foregrounds.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous() alphas = alphas.view(-1, h, w, s, 3, patch_size_y, patch_size_x).contiguous() # foreground, alpha: b, h, w, stroke_per_patch, 3, render_size_y, render_size_x decision = decision.view(-1, h, w, s, 1, 1, 1).contiguous() # decision: b, h, w, stroke_per_patch, 1, 1, 1 def partial_render(this_canvas, patch_coord_y, patch_coord_x): canvas_patch = F.unfold(this_canvas, (patch_size_y, patch_size_x), stride=(patch_size_y // 2, patch_size_x // 2)) # canvas_patch: b, 3 * py * px, h * w canvas_patch = canvas_patch.view(b, 3, patch_size_y, patch_size_x, h, w).contiguous() canvas_patch = canvas_patch.permute(0, 4, 5, 1, 2, 3).contiguous() # canvas_patch: b, h, w, 3, py, px selected_canvas_patch = canvas_patch[:, patch_coord_y, patch_coord_x, :, :, :] selected_foregrounds = foregrounds[:, patch_coord_y, patch_coord_x, :, :, :, :] selected_alphas = alphas[:, patch_coord_y, patch_coord_x, :, :, :, :] selected_decisions = decision[:, patch_coord_y, patch_coord_x, :, :, :, :] for i in range(s): cur_foreground = selected_foregrounds[:, :, :, i, :, :, :] cur_alpha = selected_alphas[:, :, :, i, :, :, :] cur_decision = selected_decisions[:, :, :, i, :, :, :] selected_canvas_patch = cur_foreground * cur_alpha * cur_decision + selected_canvas_patch * ( 1 - cur_alpha * cur_decision) this_canvas = selected_canvas_patch.permute(0, 3, 1, 4, 2, 5).contiguous() # this_canvas: b, 3, h_half, py, w_half, px h_half = this_canvas.shape[2] w_half = this_canvas.shape[4] this_canvas = this_canvas.view(b, 3, h_half * patch_size_y, w_half * patch_size_x).contiguous() # this_canvas: b, 3, h_half * py, w_half * px return this_canvas if even_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0: canvas = partial_render(cur_canvas, even_y_even_x_coord_y, even_y_even_x_coord_x) if not is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2) if not is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas if odd_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0: canvas = partial_render(cur_canvas, odd_y_odd_x_coord_y, odd_y_odd_x_coord_x) canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, -canvas.shape[3]:], canvas], dim=2) canvas = torch.cat([cur_canvas[:, :, -canvas.shape[2]:, :patch_size_x // 2], canvas], dim=3) if is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2) if is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas if odd_idx_y.shape[0] > 0 and even_idx_x.shape[0] > 0: canvas = partial_render(cur_canvas, odd_y_even_x_coord_y, odd_y_even_x_coord_x) canvas = torch.cat([cur_canvas[:, :, :patch_size_y // 2, :canvas.shape[3]], canvas], dim=2) if is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, :canvas.shape[3]]], dim=2) if not is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas if even_idx_y.shape[0] > 0 and odd_idx_x.shape[0] > 0: canvas = partial_render(cur_canvas, even_y_odd_x_coord_y, even_y_odd_x_coord_x) canvas = torch.cat([cur_canvas[:, :, :canvas.shape[2], :patch_size_x // 2], canvas], dim=3) if not is_odd_y: canvas = torch.cat([canvas, cur_canvas[:, :, -patch_size_y // 2:, -canvas.shape[3]:]], dim=2) if is_odd_x: canvas = torch.cat([canvas, cur_canvas[:, :, :canvas.shape[2], -patch_size_x // 2:]], dim=3) cur_canvas = canvas cur_canvas = cur_canvas[:, :, patch_size_y // 4:-patch_size_y // 4, patch_size_x // 4:-patch_size_x // 4] return cur_canvas def read_img(img_path, img_type='RGB', h=None, w=None): img = Image.open(img_path).convert(img_type) if h is not None and w is not None: img = img.resize((w, h), resample=Image.NEAREST) img = np.array(img) if img.ndim == 2: img = np.expand_dims(img, axis=-1) img = img.transpose((2, 0, 1)) img = torch.from_numpy(img).unsqueeze(0).float() / 255. return img def pad(img, H, W): b, c, h, w = img.shape pad_h = (H - h) // 2 pad_w = (W - w) // 2 remainder_h = (H - h) % 2 remainder_w = (W - w) % 2 img = torch.cat([torch.zeros((b, c, pad_h, w), device=img.device), img, torch.zeros((b, c, pad_h + remainder_h, w), device=img.device)], dim=-2) img = torch.cat([torch.zeros((b, c, H, pad_w), device=img.device), img, torch.zeros((b, c, H, pad_w + remainder_w), device=img.device)], dim=-1) return img def crop(img, h, w): H, W = img.shape[-2:] pad_h = (H - h) // 2 pad_w = (W - w) // 2 remainder_h = (H - h) % 2 remainder_w = (W - w) % 2 img = img[:, :, pad_h:H - pad_h - remainder_h, pad_w:W - pad_w - remainder_w] return img def main(input_path, model_path, output_dir, need_animation=False, resize_h=None, resize_w=None, serial=False): if not os.path.exists(output_dir): os.mkdir(output_dir) for entry in os.listdir(output_dir): path = os.path.join(output_dir, entry) stats = os.stat(path) created_time = datetime.fromtimestamp(stats[ST_CTIME]) if created_time < datetime.now() - timedelta(minutes = 10): if os.path.isdir(path): shutil.rmtree(path) else: os.remove(path) input_name = os.path.basename(input_path) output_path = os.path.join(output_dir, input_name) frame_dir = None if need_animation: if not serial: print('It must be under serial mode if animation results are required, so serial flag is set to True!') serial = True frame_dir = os.path.join(output_dir, input_name[:input_name.find('.')]) if not os.path.exists(frame_dir): os.mkdir(frame_dir) patch_size = 32 stroke_num = 8 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net_g = network.Painter(5, stroke_num, 256, 8, 3, 3).to(device) net_g.load_state_dict(torch.load(model_path)) net_g.eval() for param in net_g.parameters(): param.requires_grad = False brush_large_vertical = read_img('brush/brush_large_vertical.png', 'L').to(device) brush_large_horizontal = read_img('brush/brush_large_horizontal.png', 'L').to(device) meta_brushes = torch.cat( [brush_large_vertical, brush_large_horizontal], dim=0) with torch.no_grad(): original_img = read_img(input_path, 'RGB', resize_h, resize_w).to(device) original_h, original_w = original_img.shape[-2:] K = max(math.ceil(math.log2(max(original_h, original_w) / patch_size)), 0) original_img_pad_size = patch_size * (2 ** K) original_img_pad = pad(original_img, original_img_pad_size, original_img_pad_size) final_result = torch.zeros_like(original_img_pad).to(device) all_frames = [] for layer in range(0, K + 1): layer_size = patch_size * (2 ** layer) img = F.interpolate(original_img_pad, (layer_size, layer_size)) result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer))) img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size)) result_patch = F.unfold(result, (patch_size, patch_size), stride=(patch_size, patch_size)) # There are patch_num * patch_num patches in total patch_num = (layer_size - patch_size) // patch_size + 1 # img_patch, result_patch: b, 3 * output_size * output_size, h * w img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous() result_patch = result_patch.permute(0, 2, 1).contiguous().view( -1, 3, patch_size, patch_size).contiguous() shape_param, stroke_decision = net_g(img_patch, result_patch) stroke_decision = network.SignWithSigmoidGrad.apply(stroke_decision) grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous() img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view( img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous() color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view( img_patch.shape[0], stroke_num, 3).contiguous() stroke_param = torch.cat([shape_param, color], dim=-1) # stroke_param: b * h * w, stroke_per_patch, param_per_stroke # stroke_decision: b * h * w, stroke_per_patch, 1 param = stroke_param.view(1, patch_num, patch_num, stroke_num, 8).contiguous() decision = stroke_decision.view(1, patch_num, patch_num, stroke_num).contiguous().bool() # param: b, h, w, stroke_per_patch, 8 # decision: b, h, w, stroke_per_patch param[..., :2] = param[..., :2] / 2 + 0.25 param[..., 2:4] = param[..., 2:4] / 2 if serial: final_result = param2img_serial(param, decision, meta_brushes, final_result, frame_dir, False, original_h, original_w, all_frames = all_frames) else: final_result = param2img_parallel(param, decision, meta_brushes, final_result) border_size = original_img_pad_size // (2 * patch_num) img = F.interpolate(original_img_pad, (patch_size * (2 ** layer), patch_size * (2 ** layer))) result = F.interpolate(final_result, (patch_size * (2 ** layer), patch_size * (2 ** layer))) img = F.pad(img, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2, 0, 0, 0, 0]) result = F.pad(result, [patch_size // 2, patch_size // 2, patch_size // 2, patch_size // 2, 0, 0, 0, 0]) img_patch = F.unfold(img, (patch_size, patch_size), stride=(patch_size, patch_size)) result_patch = F.unfold(result, (patch_size, patch_size), stride=(patch_size, patch_size)) final_result = F.pad(final_result, [border_size, border_size, border_size, border_size, 0, 0, 0, 0]) h = (img.shape[2] - patch_size) // patch_size + 1 w = (img.shape[3] - patch_size) // patch_size + 1 # img_patch, result_patch: b, 3 * output_size * output_size, h * w img_patch = img_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous() result_patch = result_patch.permute(0, 2, 1).contiguous().view(-1, 3, patch_size, patch_size).contiguous() shape_param, stroke_decision = net_g(img_patch, result_patch) grid = shape_param[:, :, :2].view(img_patch.shape[0] * stroke_num, 1, 1, 2).contiguous() img_temp = img_patch.unsqueeze(1).contiguous().repeat(1, stroke_num, 1, 1, 1).view( img_patch.shape[0] * stroke_num, 3, patch_size, patch_size).contiguous() color = F.grid_sample(img_temp, 2 * grid - 1, align_corners=False).view( img_patch.shape[0], stroke_num, 3).contiguous() stroke_param = torch.cat([shape_param, color], dim=-1) # stroke_param: b * h * w, stroke_per_patch, param_per_stroke # stroke_decision: b * h * w, stroke_per_patch, 1 param = stroke_param.view(1, h, w, stroke_num, 8).contiguous() decision = stroke_decision.view(1, h, w, stroke_num).contiguous().bool() # param: b, h, w, stroke_per_patch, 8 # decision: b, h, w, stroke_per_patch param[..., :2] = param[..., :2] / 2 + 0.25 param[..., 2:4] = param[..., 2:4] / 2 if serial: final_result = param2img_serial(param, decision, meta_brushes, final_result, frame_dir, True, original_h, original_w, all_frames = all_frames) else: final_result = param2img_parallel(param, decision, meta_brushes, final_result) final_result = final_result[:, :, border_size:-border_size, border_size:-border_size] final_result = crop(final_result, original_h, original_w) save_img(final_result[0], output_path) tensor_to_pil = transforms.ToPILImage()(final_result[0].squeeze_(0)) #return tensor_to_pil all_frames[0].save(os.path.join(frame_dir, 'animation.gif'), save_all=True, append_images=all_frames[1:], optimize=False, duration=40, loop=0) return os.path.join(frame_dir, "animation.gif"), tensor_to_pil def gradio_inference(image_path): return main(input_path=image_path, model_path='model.pth', output_dir='output/', need_animation=True, # whether need intermediate results for animation. resize_h=400, # resize original input to this size. None means do not resize. resize_w=400, # resize original input to this size. None means do not resize. serial=True) # if need animation, serial must be True. title = "Paint Transformer" description = "Gradio demo for Paint Transformer: Feed Forward Neural Painting with Stroke Prediction. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction | Github Repo

" gr.Interface( gradio_inference, gr.Image(type="filepath", label="Input"), [gr.Image(type="filepath", label="Output GIF"), gr.Image(type="pil", label="Output Image")], title=title, description=description, article=article, cache_examples=True, examples=[ ['city.jpg'], ['tower.jpg'], ] ).launch(enable_queue=True)