DHEIVER commited on
Commit
67553c2
1 Parent(s): 1321933

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -62
app.py CHANGED
@@ -1,63 +1,47 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
+ from groq import Groq
3
  import gradio as gr
4
+
5
+ client = Groq(api_key = os.environ.get("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"), )
6
+
7
+ system_prompt = {
8
+ "role": "system",
9
+ "content":
10
+ "You are a useful assistant. You reply with efficient answers. "
11
+ }
12
+
13
+ async def chat_groq(message, history):
14
+
15
+ messages = [system_prompt]
16
+
17
+ for msg in history:
18
+ messages.append({"role": "user", "content": str(msg[0])})
19
+ messages.append({"role": "assistant", "content": str(msg[1])})
20
+
21
+ messages.append({"role": "user", "content": str (message)})
22
+
23
+ response_content = ''
24
+
25
+ stream = client.chat.completions.create(
26
+ model="llama3-70b-8192",
27
+ messages=messages,
28
+ max_tokens=1024,
29
+ temperature=1.3,
30
+ stream=True
31
+ )
32
+
33
+ for chunk in stream:
34
+ content = chunk.choices[0].delta.content
35
+ if content:
36
+ response_content += chunk. choices[0].delta.content
37
+ yield response_content
38
+
39
+ with gr. Blocks(theme=gr.themes.Monochrome(), fill_height=True) as demo:
40
+ gr.ChatInterface(chat_groq,
41
+ clear_btn=None,
42
+ undo_btn=None,
43
+ retry_btn=None,
44
+ )
45
+
46
+ demo.queue()
47
+ demo.launch()