MMD_MP_Text_Dection / meta_train.py
alwayse's picture
Upload 9 files
d0e1f8b
import torch
from torch import nn
import math
from pytorch_transformers.modeling_bert import(
BertEncoder,
BertPreTrainedModel,
BertConfig
)
class GeLU(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super().__init__()
def forward(self, x):
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class mlp_meta(nn.Module):
def __init__(self, config):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(config.hid_dim, config.hid_dim),
GeLU(),
BertLayerNorm(config.hid_dim, eps=1e-12),
nn.Dropout(config.dropout),
)
def forward(self, x):
return self.mlp(x)
class Bert_Transformer_Layer(BertPreTrainedModel):
def __init__(self,fusion_config):
super().__init__(BertConfig(**fusion_config))
bertconfig_fusion = BertConfig(**fusion_config)
self.encoder = BertEncoder(bertconfig_fusion)
self.init_weights()
def forward(self,input, mask=None):
"""
input:(bs, 4, dim)
"""
batch, feats, dim = input.size()
if mask is not None:
mask_ = torch.ones(size=(batch,feats), device=mask.device)
mask_[:,1:] = mask
mask_ = torch.bmm(mask_.view(batch,1,-1).transpose(1,2), mask_.view(batch,1,-1))
mask_ = mask_.unsqueeze(1)
else:
mask = torch.Tensor([1.0]).to(input.device)
mask_ = mask.repeat(batch,1,feats, feats)
extend_mask = (1- mask_) * -10000
assert not extend_mask.requires_grad
head_mask = [None] * self.config.num_hidden_layers
enc_output = self.encoder(
input,extend_mask,head_mask=head_mask
)
output = enc_output[0]
all_attention = enc_output[1]
return output,all_attention
class mmdPreModel(nn.Module):
def __init__(self, config, num_mlp=0, transformer_flag=False, num_hidden_layers=1, mlp_flag=True):
super(mmdPreModel, self).__init__()
self.num_mlp = num_mlp
self.transformer_flag = transformer_flag
self.mlp_flag = mlp_flag
token_num = config.token_num
self.mlp = nn.Sequential(
nn.Linear(config.in_dim, config.hid_dim),
GeLU(),
BertLayerNorm(config.hid_dim, eps=1e-12),
nn.Dropout(config.dropout),
# nn.Linear(config.hid_dim, config.out_dim),
)
self.fusion_config = {
'hidden_size': config.in_dim,
'num_hidden_layers':num_hidden_layers,
'num_attention_heads':4,
'output_attentions':True
}
if self.num_mlp>0:
self.mlp2 = nn.ModuleList([mlp_meta(config) for _ in range(self.num_mlp)])
if self.transformer_flag:
self.transformer = Bert_Transformer_Layer(self.fusion_config)
self.feature = nn.Linear(config.hid_dim * token_num, config.out_dim)
def forward(self, features):
"""
input: [batch, token_num, hidden_size], output: [batch, token_num * config.out_dim]
"""
if self.transformer_flag:
features,_ = self.transformer(features)
if self.mlp_flag:
features = self.mlp(features)
if self.num_mlp>0:
# features = self.mlp2(features)
for _ in range(1):
for mlp in self.mlp2:
features = mlp(features)
features = self.feature(features.view(features.shape[0], -1))
return features #features.view(features.shape[0], -1)