File size: 26,764 Bytes
2e1a3f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
from __future__ import absolute_import

import torch
from torch import nn
import torch.nn.functional as F
import math
from transformers import BertConfig
from transformers.modeling_outputs import BaseModelOutputWithPooling, BaseModelOutput
from BERT_explainability.modules.layers_ours import *
from transformers import (
    BertPreTrainedModel,
    PreTrainedModel,
)

ACT2FN = {
    "relu": ReLU,
    "tanh": Tanh,
    "gelu": GELU,
}


def get_activation(activation_string):
    if activation_string in ACT2FN:
        return ACT2FN[activation_string]
    else:
        raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))

def compute_rollout_attention(all_layer_matrices, start_layer=0):
    # adding residual consideration
    num_tokens = all_layer_matrices[0].shape[1]
    batch_size = all_layer_matrices[0].shape[0]
    eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
    all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
    all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
                          for i in range(len(all_layer_matrices))]
    joint_attention = all_layer_matrices[start_layer]
    for i in range(start_layer+1, len(all_layer_matrices)):
        joint_attention = all_layer_matrices[i].bmm(joint_attention)
    return joint_attention

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

        self.add1 = Add()
        self.add2 = Add()

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        # embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.add1([token_type_embeddings, position_embeddings])
        embeddings = self.add2([embeddings, inputs_embeds])
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def relprop(self, cam, **kwargs):
        cam = self.dropout.relprop(cam, **kwargs)
        cam = self.LayerNorm.relprop(cam, **kwargs)

        # [inputs_embeds, position_embeddings, token_type_embeddings]
        (cam) = self.add2.relprop(cam, **kwargs)

        return cam

class BertEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(

            self,

            hidden_states,

            attention_mask=None,

            head_mask=None,

            encoder_hidden_states=None,

            encoder_attention_mask=None,

            output_attentions=False,

            output_hidden_states=False,

            return_dict=False,

    ):
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )

    def relprop(self, cam, **kwargs):
        # assuming output_hidden_states is False
        for layer_module in reversed(self.layer):
            cam = layer_module.relprop(cam, **kwargs)
        return cam

# not adding relprop since this is only pooling at the end of the network, does not impact tokens importance
class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = Linear(config.hidden_size, config.hidden_size)
        self.activation = Tanh()
        self.pool = IndexSelect()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        self._seq_size = hidden_states.shape[1]

        # first_token_tensor = hidden_states[:, 0]
        first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device))
        first_token_tensor = first_token_tensor.squeeze(1)
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output

    def relprop(self, cam, **kwargs):
        cam = self.activation.relprop(cam, **kwargs)
        #print(cam.sum())
        cam = self.dense.relprop(cam, **kwargs)
        #print(cam.sum())
        cam = cam.unsqueeze(1)
        cam = self.pool.relprop(cam, **kwargs)
        #print(cam.sum())

        return cam

class BertAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)
        self.pruned_heads = set()
        self.clone = Clone()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(

            self,

            hidden_states,

            attention_mask=None,

            head_mask=None,

            encoder_hidden_states=None,

            encoder_attention_mask=None,

            output_attentions=False,

    ):
        h1, h2 = self.clone(hidden_states, 2)
        self_outputs = self.self(
            h1,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], h2)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs

    def relprop(self, cam, **kwargs):
        # assuming that we don't ouput the attentions (outputs = (attention_output,)), self_outputs=(context_layer,)
        (cam1, cam2) = self.output.relprop(cam, **kwargs)
        #print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
        cam1 = self.self.relprop(cam1, **kwargs)
        #print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())

        return self.clone.relprop((cam1, cam2), **kwargs)

class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = Linear(config.hidden_size, self.all_head_size)
        self.key = Linear(config.hidden_size, self.all_head_size)
        self.value = Linear(config.hidden_size, self.all_head_size)

        self.dropout = Dropout(config.attention_probs_dropout_prob)

        self.matmul1 = MatMul()
        self.matmul2 = MatMul()
        self.softmax = Softmax(dim=-1)
        self.add = Add()
        self.mul = Mul()
        self.head_mask = None
        self.attention_mask = None
        self.clone = Clone()

        self.attn_cam = None
        self.attn = None
        self.attn_gradients = None

    def get_attn(self):
        return self.attn

    def save_attn(self, attn):
        self.attn = attn

    def save_attn_cam(self, cam):
        self.attn_cam = cam

    def get_attn_cam(self):
        return self.attn_cam

    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def transpose_for_scores_relprop(self, x):
        return x.permute(0, 2, 1, 3).flatten(2)

    def forward(

            self,

            hidden_states,

            attention_mask=None,

            head_mask=None,

            encoder_hidden_states=None,

            encoder_attention_mask=None,

            output_attentions=False,

    ):
        self.head_mask = head_mask
        self.attention_mask = attention_mask

        h1, h2, h3 = self.clone(hidden_states, 3)
        mixed_query_layer = self.query(h1)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        else:
            mixed_key_layer = self.key(h2)
            mixed_value_layer = self.value(h3)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)])
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = self.add([attention_scores, attention_mask])

        # Normalize the attention scores to probabilities.
        attention_probs = self.softmax(attention_scores)

        self.save_attn(attention_probs)
        attention_probs.register_hook(self.save_attn_gradients)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = self.matmul2([attention_probs, value_layer])

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        return outputs

    def relprop(self, cam, **kwargs):
        # Assume output_attentions == False
        cam = self.transpose_for_scores(cam)

        # [attention_probs, value_layer]
        (cam1, cam2) = self.matmul2.relprop(cam, **kwargs)
        cam1 /= 2
        cam2 /= 2
        if self.head_mask is not None:
            # [attention_probs, head_mask]
            (cam1, _)= self.mul.relprop(cam1, **kwargs)


        self.save_attn_cam(cam1)

        cam1 = self.dropout.relprop(cam1, **kwargs)

        cam1 = self.softmax.relprop(cam1, **kwargs)

        if self.attention_mask is not None:
            # [attention_scores, attention_mask]
            (cam1, _) = self.add.relprop(cam1, **kwargs)

        # [query_layer, key_layer.transpose(-1, -2)]
        (cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs)
        cam1_1 /= 2
        cam1_2 /= 2

        # query
        cam1_1 = self.transpose_for_scores_relprop(cam1_1)
        cam1_1 = self.query.relprop(cam1_1, **kwargs)

        # key
        cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2))
        cam1_2 = self.key.relprop(cam1_2, **kwargs)

        # value
        cam2 = self.transpose_for_scores_relprop(cam2)
        cam2 = self.value.relprop(cam2, **kwargs)

        cam = self.clone.relprop((cam1_1, cam1_2, cam2), **kwargs)

        return cam


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = Dropout(config.hidden_dropout_prob)
        self.add = Add()

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        add = self.add([hidden_states, input_tensor])
        hidden_states = self.LayerNorm(add)
        return hidden_states

    def relprop(self, cam, **kwargs):
        cam = self.LayerNorm.relprop(cam, **kwargs)
        # [hidden_states, input_tensor]
        (cam1, cam2) = self.add.relprop(cam, **kwargs)
        cam1 = self.dropout.relprop(cam1, **kwargs)
        cam1 = self.dense.relprop(cam1, **kwargs)

        return (cam1, cam2)


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]()
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states

    def relprop(self, cam, **kwargs):
        cam = self.intermediate_act_fn.relprop(cam, **kwargs)  # FIXME only ReLU
        #print(cam.sum())
        cam = self.dense.relprop(cam, **kwargs)
        #print(cam.sum())
        return cam


class BertOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = Dropout(config.hidden_dropout_prob)
        self.add = Add()

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        add = self.add([hidden_states, input_tensor])
        hidden_states = self.LayerNorm(add)
        return hidden_states

    def relprop(self, cam, **kwargs):
        # print("in", cam.sum())
        cam = self.LayerNorm.relprop(cam, **kwargs)
        #print(cam.sum())
        # [hidden_states, input_tensor]
        (cam1, cam2)= self.add.relprop(cam, **kwargs)
        # print("add", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
        cam1 = self.dropout.relprop(cam1, **kwargs)
        #print(cam1.sum())
        cam1 = self.dense.relprop(cam1, **kwargs)
        # print("dense", cam1.sum())

        # print("out", cam1.sum() + cam2.sum(), cam1.sum(), cam2.sum())
        return (cam1, cam2)


class BertLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)
        self.clone = Clone()

    def forward(

            self,

            hidden_states,

            attention_mask=None,

            head_mask=None,

            output_attentions=False,

    ):
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        ao1, ao2 = self.clone(attention_output, 2)
        intermediate_output = self.intermediate(ao1)
        layer_output = self.output(intermediate_output, ao2)

        outputs = (layer_output,) + outputs
        return outputs

    def relprop(self, cam, **kwargs):
        (cam1, cam2) = self.output.relprop(cam, **kwargs)
        # print("output", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
        cam1 = self.intermediate.relprop(cam1, **kwargs)
        # print("intermediate", cam1.sum())
        cam = self.clone.relprop((cam1, cam2), **kwargs)
        # print("clone", cam.sum())
        cam = self.attention.relprop(cam, **kwargs)
        # print("attention", cam.sum())
        return cam


class BertModel(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config)

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def forward(

            self,

            input_ids=None,

            attention_mask=None,

            token_type_ids=None,

            position_ids=None,

            head_mask=None,

            inputs_embeds=None,

            encoder_hidden_states=None,

            encoder_attention_mask=None,

            output_attentions=None,

            output_hidden_states=None,

            return_dict=None,

    ):
        r"""

        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):

            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention

            if the model is configured as a decoder.

        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):

            Mask to avoid performing attention on the padding token indices of the encoder input. This mask

            is used in the cross-attention if the model is configured as a decoder.

            Mask values selected in ``[0, 1]``:

            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

    def relprop(self, cam, **kwargs):
        cam = self.pooler.relprop(cam, **kwargs)
        # print("111111111111",cam.sum())
        cam = self.encoder.relprop(cam, **kwargs)
        # print("222222222222222", cam.sum())
        # print("conservation: ", cam.sum())
        return cam


if __name__ == '__main__':
    class Config:
      def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.attention_probs_dropout_prob = attention_probs_dropout_prob

    model = BertSelfAttention(Config(1024, 4, 0.1))
    x = torch.rand(2, 20, 1024)
    x.requires_grad_()

    model.eval()

    y = model.forward(x)

    relprop = model.relprop(torch.rand(2, 20, 1024), (torch.rand(2, 20, 1024),))

    print(relprop[1][0].shape)